{"title":"Evaluating Sentinel-3 Viability for Vegetation Canopy Monitoring and Fuel Moisture Content Estimation","authors":"Valerio Pampanoni, G. Laneve, G. Santilli","doi":"10.1109/IGARSS46834.2022.9884150","DOIUrl":null,"url":null,"abstract":"The main objectives of the Sentinel-3 mission are to support ocean forecasting systems, environmental and climate monitoring. However, the coverage of the visible, near-infrared and short-wave infrared portion of the electromagnetic spectrum with a 300 meter resolution and a revisit period of less than 2 days make it very appealing also for vegetation monitoring. In this paper we explore the possibility of using the Sentinel-3 Synergy surface directional reflectances and the PROSAIL model to reliably estimate biophysical variables in general and live fuel moisture content in particular. The latter is a fundamental variable in fire behaviour models and in fire danger assessment, and consequently of high interest in fire management activities. We performed a Global Sensitivity Analysis to identify the most significant PROSAIL parameters in each Synergy channel, and tested the results by implementing a simple Look-Up Table based retrieval algorithm. The outcome shows the potential of biophysical parameter estimation based on this Sentinel-3 product.","PeriodicalId":426003,"journal":{"name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS46834.2022.9884150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The main objectives of the Sentinel-3 mission are to support ocean forecasting systems, environmental and climate monitoring. However, the coverage of the visible, near-infrared and short-wave infrared portion of the electromagnetic spectrum with a 300 meter resolution and a revisit period of less than 2 days make it very appealing also for vegetation monitoring. In this paper we explore the possibility of using the Sentinel-3 Synergy surface directional reflectances and the PROSAIL model to reliably estimate biophysical variables in general and live fuel moisture content in particular. The latter is a fundamental variable in fire behaviour models and in fire danger assessment, and consequently of high interest in fire management activities. We performed a Global Sensitivity Analysis to identify the most significant PROSAIL parameters in each Synergy channel, and tested the results by implementing a simple Look-Up Table based retrieval algorithm. The outcome shows the potential of biophysical parameter estimation based on this Sentinel-3 product.