Nonlinearity in Data with Gaps: Application to Ecological and Meteorological Datasets

Sandip V. George, G. Ambika
{"title":"Nonlinearity in Data with Gaps: Application to Ecological and Meteorological Datasets","authors":"Sandip V. George, G. Ambika","doi":"10.29195/iascs.01.01.0002","DOIUrl":null,"url":null,"abstract":"Datagaps are ubiquitous in real world observational data. Quantifying nonlinearity in data having gaps can be challenging. Reported research points out that interpolation can affect nonlinear quantifiers adversely, artificially introducing signatures of nonlinearity where none exist. In this paper we attempt to quantify the effect that datagaps have on the multifractal spectrum ($f(\\alpha)$), in the absence of interpolation. We identify tolerable gap ranges, where the measures defining the $f(\\alpha)$ curve do not show considerable deviation from the evenly sampled case. We apply this to the multifractal spectra of multiple data-sets with missing data from the SMEAR database. The datasets we consider include ecological datasets from SMEAR I, namely CO$_2$ exchange variation, photosynthetically active radiation levels and soil moisture variation time series, and meteorological datasets from SMEAR II, namely dew point variation and air temperature variation. We could establish multifractality due to deterministic nonlinearity in two of these datasets, even in the presence of gaps.","PeriodicalId":166772,"journal":{"name":"arXiv: Chaotic Dynamics","volume":"524 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29195/iascs.01.01.0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Datagaps are ubiquitous in real world observational data. Quantifying nonlinearity in data having gaps can be challenging. Reported research points out that interpolation can affect nonlinear quantifiers adversely, artificially introducing signatures of nonlinearity where none exist. In this paper we attempt to quantify the effect that datagaps have on the multifractal spectrum ($f(\alpha)$), in the absence of interpolation. We identify tolerable gap ranges, where the measures defining the $f(\alpha)$ curve do not show considerable deviation from the evenly sampled case. We apply this to the multifractal spectra of multiple data-sets with missing data from the SMEAR database. The datasets we consider include ecological datasets from SMEAR I, namely CO$_2$ exchange variation, photosynthetically active radiation levels and soil moisture variation time series, and meteorological datasets from SMEAR II, namely dew point variation and air temperature variation. We could establish multifractality due to deterministic nonlinearity in two of these datasets, even in the presence of gaps.
带间隙数据的非线性:在生态和气象数据集上的应用
在现实世界的观测数据中,Datagaps无处不在。在有间隙的数据中量化非线性是具有挑战性的。有报道的研究指出,插值会对非线性量词产生不利影响,在不存在非线性的情况下人为地引入非线性特征。在本文中,我们试图量化在没有插值的情况下,datagaps对多重分形谱($f(\alpha)$)的影响。我们确定了可容忍的间隙范围,其中定义$f(\alpha)$曲线的度量不会显示出与均匀抽样情况的相当大的偏差。我们将此方法应用于多数据集的多重分形谱,其中包含了从SMEAR数据库中丢失的数据。我们考虑的数据集包括来自SMEAR I的生态数据集,即CO$_2$交换变化、光合有效辐射水平和土壤湿度变化时间序列,以及来自SMEAR II的气象数据集,即露点变化和气温变化。我们可以建立多重分形,由于确定性非线性在这两个数据集,即使在存在差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信