Life Data Analysis with a Joint Probability Density Function

Umur Yenal, David Jimenez
{"title":"Life Data Analysis with a Joint Probability Density Function","authors":"Umur Yenal, David Jimenez","doi":"10.1109/RAMS48030.2020.9153681","DOIUrl":null,"url":null,"abstract":"When assessing product life, the survival analysis is generally conducted in a time or usage domain. In certain instances, it is beneficial to investigate the impact of joint variables on product reliability, and in this case, the joint distribution of usage and time are considered. While it is simple to analyze unconditional probability density functions independently, the problem of statistical independence with random variables of usage and time arises. Usage is not independent of time, since usage contains information about time and thus, the joint probability density function then cannot be the product of both marginal probability density functions.","PeriodicalId":360096,"journal":{"name":"2020 Annual Reliability and Maintainability Symposium (RAMS)","volume":"37 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Annual Reliability and Maintainability Symposium (RAMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAMS48030.2020.9153681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

When assessing product life, the survival analysis is generally conducted in a time or usage domain. In certain instances, it is beneficial to investigate the impact of joint variables on product reliability, and in this case, the joint distribution of usage and time are considered. While it is simple to analyze unconditional probability density functions independently, the problem of statistical independence with random variables of usage and time arises. Usage is not independent of time, since usage contains information about time and thus, the joint probability density function then cannot be the product of both marginal probability density functions.
基于联合概率密度函数的寿命数据分析
在评估产品寿命时,生存分析通常在一个时间或使用域内进行。在某些情况下,研究联合变量对产品可靠性的影响是有益的,在这种情况下,考虑了使用和时间的联合分布。虽然独立分析无条件概率密度函数很简单,但出现了使用和时间随机变量的统计独立性问题。用法与时间无关,因为用法包含时间信息,因此联合概率密度函数不可能是两个边际概率密度函数的乘积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信