Learning to rank for freshness and relevance

Na Dai, Milad Shokouhi, Brian D. Davison
{"title":"Learning to rank for freshness and relevance","authors":"Na Dai, Milad Shokouhi, Brian D. Davison","doi":"10.1145/2009916.2009933","DOIUrl":null,"url":null,"abstract":"Freshness of results is important in modern web search. Failing to recognize the temporal aspect of a query can negatively affect the user experience, and make the search engine appear stale. While freshness and relevance can be closely related for some topics (e.g., news queries), they are more independent in others (e.g., time insensitive queries). Therefore, optimizing one criterion does not necessarily improve the other, and can even do harm in some cases. We propose a machine-learning framework for simultaneously optimizing freshness and relevance, in which the trade-off is automatically adaptive to query temporal characteristics. We start by illustrating different temporal characteristics of queries, and the features that can be used for capturing these properties. We then introduce our supervised framework that leverages the temporal profile of queries (inferred from pseudo-feedback documents) along with the other ranking features to improve both freshness and relevance of search results. Our experiments on a large archival web corpus demonstrate the efficacy of our techniques.","PeriodicalId":356580,"journal":{"name":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2009916.2009933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79

Abstract

Freshness of results is important in modern web search. Failing to recognize the temporal aspect of a query can negatively affect the user experience, and make the search engine appear stale. While freshness and relevance can be closely related for some topics (e.g., news queries), they are more independent in others (e.g., time insensitive queries). Therefore, optimizing one criterion does not necessarily improve the other, and can even do harm in some cases. We propose a machine-learning framework for simultaneously optimizing freshness and relevance, in which the trade-off is automatically adaptive to query temporal characteristics. We start by illustrating different temporal characteristics of queries, and the features that can be used for capturing these properties. We then introduce our supervised framework that leverages the temporal profile of queries (inferred from pseudo-feedback documents) along with the other ranking features to improve both freshness and relevance of search results. Our experiments on a large archival web corpus demonstrate the efficacy of our techniques.
学习根据新鲜度和相关性进行排名
在现代网络搜索中,结果的新鲜度很重要。不能识别查询的时间方面可能会对用户体验产生负面影响,并使搜索引擎显得陈旧。虽然新鲜度和相关性对于某些主题(例如,新闻查询)可能密切相关,但它们在其他主题(例如,对时间不敏感的查询)中更加独立。因此,优化一个标准并不一定会改善另一个标准,在某些情况下甚至会造成损害。我们提出了一个同时优化新鲜度和相关性的机器学习框架,其中权衡是自动适应查询时间特征的。我们首先说明查询的不同时间特征,以及可用于捕获这些属性的特性。然后,我们介绍了我们的监督框架,该框架利用查询的时间概况(从伪反馈文档中推断)以及其他排名特性来提高搜索结果的新鲜度和相关性。我们在一个大型档案网络语料库上的实验证明了我们的技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信