Improvement of Particle Filter for Reinforcement Learning

A. Notsu, Katsuhiro Honda, H. Ichihashi, Yuki Komori, Yuuki Iwamoto
{"title":"Improvement of Particle Filter for Reinforcement Learning","authors":"A. Notsu, Katsuhiro Honda, H. Ichihashi, Yuki Komori, Yuuki Iwamoto","doi":"10.1109/ICMLA.2011.75","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel framework of learning that uses a particle filter. In a real-world situation, it is difficult to express a continuous state and a continuous action. The problem is solved by using our particle filter, which is one of the methods for dividing a continuous state and a continuous action. Our method needs only a small number of memories and parameters for searching the solution in the space. We conducted pendulum and double-pendulum simulations and observed the difference between the conventional method and the proposed method. Simulation results show there was no bad effect on the received reward.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we propose a novel framework of learning that uses a particle filter. In a real-world situation, it is difficult to express a continuous state and a continuous action. The problem is solved by using our particle filter, which is one of the methods for dividing a continuous state and a continuous action. Our method needs only a small number of memories and parameters for searching the solution in the space. We conducted pendulum and double-pendulum simulations and observed the difference between the conventional method and the proposed method. Simulation results show there was no bad effect on the received reward.
粒子滤波在强化学习中的改进
在本文中,我们提出了一个使用粒子滤波的学习框架。在现实世界中,很难表达连续的状态和连续的动作。我们提出的粒子滤波是分割连续状态和连续动作的一种方法,它解决了这一问题。我们的方法只需要少量的存储器和参数就可以在空间中搜索解。我们进行了单摆和双摆模拟,并观察了传统方法与所提方法的差异。仿真结果表明,这对获得的奖励没有不良影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信