Filipe Costa, Marcos Vinícius L. Melo, Igor Gadelha, G. Folego, Larissa Gambaro, André Rodrigues
{"title":"Self-portrait to ID Document face matching: CNN-Based face verification in cross-domain scenario","authors":"Filipe Costa, Marcos Vinícius L. Melo, Igor Gadelha, G. Folego, Larissa Gambaro, André Rodrigues","doi":"10.5753/wvc.2021.18885","DOIUrl":null,"url":null,"abstract":"Face verification approaches determine whether two given faces are from the same person. Recently, a new demand for face verification application which has become popular in commercial applications is the self-portrait and ID face matching, in which we compare the faces of a selfie shot by a subject and the face in a picture of her identification document. In this work, we proposed a novel approach for face verification in a cross-domain scenario, assuming we have only two images for each subject in the dataset. The method is based on siamese architecture with triplet-loss function. Experiments show the proposed model reaches good effectiveness for cross-domain face verification with low error rates, in comparison to other works of the literature.","PeriodicalId":311431,"journal":{"name":"Anais do XVII Workshop de Visão Computacional (WVC 2021)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVII Workshop de Visão Computacional (WVC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wvc.2021.18885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Face verification approaches determine whether two given faces are from the same person. Recently, a new demand for face verification application which has become popular in commercial applications is the self-portrait and ID face matching, in which we compare the faces of a selfie shot by a subject and the face in a picture of her identification document. In this work, we proposed a novel approach for face verification in a cross-domain scenario, assuming we have only two images for each subject in the dataset. The method is based on siamese architecture with triplet-loss function. Experiments show the proposed model reaches good effectiveness for cross-domain face verification with low error rates, in comparison to other works of the literature.