AutoDict: Automated Dictionary Discovery

Fei Chiang, Periklis Andritsos, Erkang Zhu, Renée J. Miller
{"title":"AutoDict: Automated Dictionary Discovery","authors":"Fei Chiang, Periklis Andritsos, Erkang Zhu, Renée J. Miller","doi":"10.1109/ICDE.2012.126","DOIUrl":null,"url":null,"abstract":"An attribute dictionary is a set of attributes together with a set of common values of each attribute. Such dictionaries are valuable in understanding unstructured or loosely structured textual descriptions of entity collections, such as product catalogs. Dictionaries provide the supervised data for learning product or entity descriptions. In this demonstration, we will present AutoDict, a system that analyzes input data records, and discovers high quality dictionaries using information theoretic techniques. To the best of our knowledge, AutoDict is the first end-to-end system for building attribute dictionaries. Our demonstration will showcase the different information analysis and extraction features within AutoDict, and highlight the process of generating high quality attribute dictionaries.","PeriodicalId":321608,"journal":{"name":"2012 IEEE 28th International Conference on Data Engineering","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 28th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2012.126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

An attribute dictionary is a set of attributes together with a set of common values of each attribute. Such dictionaries are valuable in understanding unstructured or loosely structured textual descriptions of entity collections, such as product catalogs. Dictionaries provide the supervised data for learning product or entity descriptions. In this demonstration, we will present AutoDict, a system that analyzes input data records, and discovers high quality dictionaries using information theoretic techniques. To the best of our knowledge, AutoDict is the first end-to-end system for building attribute dictionaries. Our demonstration will showcase the different information analysis and extraction features within AutoDict, and highlight the process of generating high quality attribute dictionaries.
自动字典发现
属性字典是一组属性以及每个属性的一组公共值。这样的字典在理解实体集合(如产品目录)的非结构化或松散结构化文本描述时很有价值。字典为学习产品或实体描述提供有监督的数据。在这个演示中,我们将介绍AutoDict,一个分析输入数据记录并使用信息理论技术发现高质量字典的系统。据我们所知,AutoDict是第一个用于构建属性字典的端到端系统。我们的演示将展示AutoDict中不同的信息分析和提取功能,并重点介绍生成高质量属性字典的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信