Robert W. McGrail, Thuy Trang Nguyen, Thanh Thuy Trang Tran, A. Tripathi
{"title":"A Terminating and Confluent Term Rewriting System for the Pure Equational Theory of Quandles","authors":"Robert W. McGrail, Thuy Trang Nguyen, Thanh Thuy Trang Tran, A. Tripathi","doi":"10.1109/SYNASC.2018.00035","DOIUrl":null,"url":null,"abstract":"This article presents a term rewriting system for the first-order equational theory of quandles that is both terminating and confluent. As a consequence, it has unique normal forms and so encodes a decision procedure for quandle identities. However, the problem of computing a normal form for this term rewriting system is, in worst case, EXP hard.","PeriodicalId":273805,"journal":{"name":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2018.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This article presents a term rewriting system for the first-order equational theory of quandles that is both terminating and confluent. As a consequence, it has unique normal forms and so encodes a decision procedure for quandle identities. However, the problem of computing a normal form for this term rewriting system is, in worst case, EXP hard.