Mixture-Modeling with Unsupervised Clusters for Domain Adaptation in Statistical Machine Translation

Rico Sennrich
{"title":"Mixture-Modeling with Unsupervised Clusters for Domain Adaptation in Statistical Machine Translation","authors":"Rico Sennrich","doi":"10.5167/UZH-62826","DOIUrl":null,"url":null,"abstract":"In Statistical Machine Translation, in-domain and out-of-domain training data are not always clearly delineated. This paper investigates how we can still use mixture-modeling techniques for domain adaptation in such cases. We apply unsupervised clustering methods to split the original training set, and then use mixture-modeling techniques to build a model adapted to a given target domain. We show that this approach improves performance over an unadapted baseline, and several alternative domain adaptation methods.","PeriodicalId":137211,"journal":{"name":"European Association for Machine Translation Conferences/Workshops","volume":"1230 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Association for Machine Translation Conferences/Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5167/UZH-62826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

In Statistical Machine Translation, in-domain and out-of-domain training data are not always clearly delineated. This paper investigates how we can still use mixture-modeling techniques for domain adaptation in such cases. We apply unsupervised clustering methods to split the original training set, and then use mixture-modeling techniques to build a model adapted to a given target domain. We show that this approach improves performance over an unadapted baseline, and several alternative domain adaptation methods.
统计机器翻译领域自适应的无监督聚类混合建模
在统计机器翻译中,域内和域外的训练数据并不总是被清晰地描绘出来。本文探讨了如何在这种情况下仍然使用混合建模技术进行领域适应。我们采用无监督聚类方法对原始训练集进行分割,然后使用混合建模技术构建适应给定目标域的模型。我们展示了这种方法在未适应的基线和几种可选的领域适应方法上提高了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信