Running discrete cosine transform

H Olkkonen
{"title":"Running discrete cosine transform","authors":"H Olkkonen","doi":"10.1016/0141-5425(92)90104-S","DOIUrl":null,"url":null,"abstract":"<div><p>The discrete cosine transform (DCT) has become an important tool in digital signal processing because its performance is close to the optimal Karhunen-Loeve transform. In this work the running discrete cosine transform (RDCT) is introduced. Using the properties of the discrete Fourier transform kernel <span><math><mtext>W = </mtext><mtext>exp</mtext><mtext>(</mtext><mtext>−2π</mtext><mtext>j</mtext><mtext>N</mtext><mtext>)</mtext></math></span>, a fast recursive algorithm was developed for real-time computation of the RDCT coefficients. For <em>N</em>-point RDCT the present algorithm needs only 2<em>N</em> real multiplications. The hardware implementations of the RDCT algorithm and applications in realtime data processing are discussed.</p></div>","PeriodicalId":75992,"journal":{"name":"Journal of biomedical engineering","volume":"14 6","pages":"Pages 507-508"},"PeriodicalIF":0.0000,"publicationDate":"1992-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0141-5425(92)90104-S","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/014154259290104S","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The discrete cosine transform (DCT) has become an important tool in digital signal processing because its performance is close to the optimal Karhunen-Loeve transform. In this work the running discrete cosine transform (RDCT) is introduced. Using the properties of the discrete Fourier transform kernel W = exp(−2πjN), a fast recursive algorithm was developed for real-time computation of the RDCT coefficients. For N-point RDCT the present algorithm needs only 2N real multiplications. The hardware implementations of the RDCT algorithm and applications in realtime data processing are discussed.

运行离散余弦变换
离散余弦变换(DCT)因其性能接近最优Karhunen-Loeve变换而成为数字信号处理的重要工具。本文介绍了运行离散余弦变换(rct)。利用离散傅里叶变换核函数W = exp(−2πjN)的性质,提出了一种实时计算rct系数的快速递推算法。对于n点RDCT,本算法只需要2N次实乘法。讨论了RDCT算法的硬件实现及其在实时数据处理中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信