Penerapan Algoritma Jaringan Saraf Tiruan Metode Backpropagation untuk Memprediksi Jumlah Nilai Ekspor di Provinsi NTB

Biondi Bagasta Wiko Putra, M. A. Albar, Budi Irmawati
{"title":"Penerapan Algoritma Jaringan Saraf Tiruan Metode Backpropagation untuk Memprediksi Jumlah Nilai Ekspor di Provinsi NTB","authors":"Biondi Bagasta Wiko Putra, M. A. Albar, Budi Irmawati","doi":"10.29303/jtika.v1i2.50","DOIUrl":null,"url":null,"abstract":"This paper presents the application of the Backpropagation method of the Artificial Neural Network algorithm in the case study to forecasting the amount of export value in NTB province. This forecasting process uses two scenarios, namely forecasting the amount of export value in NTB province and forecasting the amount of export value based on a commodity which then the forecasting results based on these two scenarios will be compared. Based on the results of the system testing that has been done, the best network architecture is obtained from 12-4-1, the best value of learning rate is 0.2 and the best number of epochs is 6000, which in the training device produces these variables resulting in an MSE value is 0,0034 and MAPE value is 8.52% and for the testing result MSE value is 0.0169 and MAPE value is 17.94%. Based on the results of forecasting with two scenarios that have been carried out are forecasting results that are negative. This is because the pattern of data used is not stable so that it can produce negative values.","PeriodicalId":197519,"journal":{"name":"Jurnal Teknologi Informasi, Komputer, dan Aplikasinya (JTIKA )","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi Informasi, Komputer, dan Aplikasinya (JTIKA )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29303/jtika.v1i2.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents the application of the Backpropagation method of the Artificial Neural Network algorithm in the case study to forecasting the amount of export value in NTB province. This forecasting process uses two scenarios, namely forecasting the amount of export value in NTB province and forecasting the amount of export value based on a commodity which then the forecasting results based on these two scenarios will be compared. Based on the results of the system testing that has been done, the best network architecture is obtained from 12-4-1, the best value of learning rate is 0.2 and the best number of epochs is 6000, which in the training device produces these variables resulting in an MSE value is 0,0034 and MAPE value is 8.52% and for the testing result MSE value is 0.0169 and MAPE value is 17.94%. Based on the results of forecasting with two scenarios that have been carried out are forecasting results that are negative. This is because the pattern of data used is not stable so that it can produce negative values.
模拟神经网络算法的应用,用反宣传方法来预测NTB省的出口价值
本文将人工神经网络算法中的反向传播方法应用于NTB省的出口货值预测。该预测过程采用两种情景,分别是对NTB省的出口额进行预测和对某一商品的出口额进行预测,然后对两种情景的预测结果进行比较。根据已经完成的系统测试结果,得到的最佳网络架构为12-4-1,最佳学习率为0.2,最佳epoch数为6000,在训练设备中产生这些变量,得到的MSE值为0.0034,MAPE值为8.52%,测试结果MSE值为0.0169,MAPE值为17.94%。根据已经进行的两种情景的预测结果,预测结果是负面的。这是因为所使用的数据模式不稳定,因此可能产生负值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信