Qiong Zeng, Yinqiao Wang, Jian Zhang, Wenting Zhang, Changhe Tu, I. Viola, Yunhai Wang
{"title":"Data-Driven Colormap Optimization for 2D Scalar Field Visualization","authors":"Qiong Zeng, Yinqiao Wang, Jian Zhang, Wenting Zhang, Changhe Tu, I. Viola, Yunhai Wang","doi":"10.1109/VISUAL.2019.8933764","DOIUrl":null,"url":null,"abstract":"Colormapping is an effective and popular visual representation to analyze data patterns for 2D scalar fields. Scientists usually adopt a default colormap and adjust it to fit data in a trial-and-error process. Even though a few colormap design rules and measures are proposed, there is no automatic algorithm to directly optimize a default colormap for better revealing spatial patterns hidden in unevenly distributed data, especially the boundary characteristics. To fill this gap, we conduct a pilot study with six domain experts and summarize three requirements for automated colormap adjustment. We formulate the colormap adjustment as a nonlinear constrained optimization problem, and develop an efficient GPU-based implementation accompanying with a few interactions. We demonstrate the usefulness of our method with two case studies.","PeriodicalId":192801,"journal":{"name":"2019 IEEE Visualization Conference (VIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Visualization Conference (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2019.8933764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Colormapping is an effective and popular visual representation to analyze data patterns for 2D scalar fields. Scientists usually adopt a default colormap and adjust it to fit data in a trial-and-error process. Even though a few colormap design rules and measures are proposed, there is no automatic algorithm to directly optimize a default colormap for better revealing spatial patterns hidden in unevenly distributed data, especially the boundary characteristics. To fill this gap, we conduct a pilot study with six domain experts and summarize three requirements for automated colormap adjustment. We formulate the colormap adjustment as a nonlinear constrained optimization problem, and develop an efficient GPU-based implementation accompanying with a few interactions. We demonstrate the usefulness of our method with two case studies.