Early Kick Detection Using Adaptive Analytics with Downhole Accelerometer Data

Robello Samuel
{"title":"Early Kick Detection Using Adaptive Analytics with Downhole Accelerometer Data","authors":"Robello Samuel","doi":"10.2118/191645-MS","DOIUrl":null,"url":null,"abstract":"\n High frequency downhole vibration data includes more hidden information than low frequency surface data. This paper discusses monitoring high frequency acceleration data for early kick detection because the accelerator sensor values’ trend is monitored rather than processed.\n When gas, fluid, or oil kick occurs, fluid influx reduces fluid viscosity in the annulus, causing degradation of the damping factor. The sensor installed on the drillpipe detects the velocity/acceleration modification, resulting in the damping factor modification and includes an analytical model to calculate the effect of the damping ratio on the acceleration calculations. Fluid influx and migration in the wellbore strongly affects the damping factor.\n This paper discusses a method of deconvoluting sensor values that use a combination of minimum entropy deconvolution and the Teager-Kaiser energy operator to remove the noise, unwanted sensor values, and the likelihood of false predictions. The trend of the final intrinsic mode functions (IMFs) at each depth is continuously monitored to predict formation influx, if any. A novel concept of monitoring incremental IMF and IMF energy at each depth is introduced, revealing a wealth of information and simplifying the process of monitoring and analyzing the vast amount of available data. The methodology developed extracts essential information from high frequency vibration data to make real-time data monitoring straightforward, reliable, and fast.","PeriodicalId":441169,"journal":{"name":"Day 3 Wed, September 26, 2018","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, September 26, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/191645-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

High frequency downhole vibration data includes more hidden information than low frequency surface data. This paper discusses monitoring high frequency acceleration data for early kick detection because the accelerator sensor values’ trend is monitored rather than processed. When gas, fluid, or oil kick occurs, fluid influx reduces fluid viscosity in the annulus, causing degradation of the damping factor. The sensor installed on the drillpipe detects the velocity/acceleration modification, resulting in the damping factor modification and includes an analytical model to calculate the effect of the damping ratio on the acceleration calculations. Fluid influx and migration in the wellbore strongly affects the damping factor. This paper discusses a method of deconvoluting sensor values that use a combination of minimum entropy deconvolution and the Teager-Kaiser energy operator to remove the noise, unwanted sensor values, and the likelihood of false predictions. The trend of the final intrinsic mode functions (IMFs) at each depth is continuously monitored to predict formation influx, if any. A novel concept of monitoring incremental IMF and IMF energy at each depth is introduced, revealing a wealth of information and simplifying the process of monitoring and analyzing the vast amount of available data. The methodology developed extracts essential information from high frequency vibration data to make real-time data monitoring straightforward, reliable, and fast.
利用井下加速度计数据进行自适应分析的早期井涌检测
高频井下振动数据比低频地面振动数据包含更多的隐藏信息。由于加速度传感器值的变化趋势是监测而不是处理的,因此本文讨论了监测高频加速度数据以进行早期井涌检测。当气体、流体或油涌发生时,流体流入会降低环空流体的粘度,导致阻尼系数降低。安装在钻杆上的传感器检测到速度/加速度的变化,从而导致阻尼系数的变化,并包含一个分析模型来计算阻尼比对加速度计算的影响。井筒内流体的流入和运移对阻尼系数有很大影响。本文讨论了一种反卷积传感器值的方法,该方法使用最小熵反卷积和Teager-Kaiser能量算子的组合来去除噪声,不需要的传感器值和错误预测的可能性。连续监测每个深度的最终固有模态函数(IMFs)的趋势,以预测地层流入(如果有的话)。引入了监测每个深度的增量IMF和IMF能量的新概念,揭示了丰富的信息,简化了监测和分析大量可用数据的过程。该方法从高频振动数据中提取重要信息,使实时数据监测简单、可靠、快速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信