A Cartographic Framework for Autonomous Mobile Robot Using OpenStreetMap Data

Seoho Lee, Hongjun Kim
{"title":"A Cartographic Framework for Autonomous Mobile Robot Using OpenStreetMap Data","authors":"Seoho Lee, Hongjun Kim","doi":"10.1109/RAAI56146.2022.10092973","DOIUrl":null,"url":null,"abstract":"This paper presents a cartographic framework that generates outdoor maps for autonomous mobile robots using OpenStreetMap(OSM). The framework collects various vector data from the OSM, and creates a map necessary for autonomous driving through a modifying and merging process. To verify the map, a set of experiments were conducted in Gazebo, which is one of the 3D robot simulators. The driving simulation was successfully performed, and the result shows that the map generated from the framework can be used in autonomous driving. This framework can accelerate the commercialization of various outdoor mobile robots by reducing the time and cost required for map construction and expanding the application field.","PeriodicalId":190255,"journal":{"name":"2022 2nd International Conference on Robotics, Automation and Artificial Intelligence (RAAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Robotics, Automation and Artificial Intelligence (RAAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAAI56146.2022.10092973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a cartographic framework that generates outdoor maps for autonomous mobile robots using OpenStreetMap(OSM). The framework collects various vector data from the OSM, and creates a map necessary for autonomous driving through a modifying and merging process. To verify the map, a set of experiments were conducted in Gazebo, which is one of the 3D robot simulators. The driving simulation was successfully performed, and the result shows that the map generated from the framework can be used in autonomous driving. This framework can accelerate the commercialization of various outdoor mobile robots by reducing the time and cost required for map construction and expanding the application field.
基于OpenStreetMap数据的自主移动机器人制图框架
本文提出了一个使用OpenStreetMap(OSM)为自主移动机器人生成户外地图的制图框架。该框架从OSM中收集各种矢量数据,并通过修改和合并过程创建自动驾驶所需的地图。为了验证该地图,在Gazebo中进行了一系列实验,Gazebo是3D机器人模拟器之一。仿真结果表明,该框架生成的地图可用于自动驾驶。该框架可以减少地图构建所需的时间和成本,扩大应用领域,从而加速各种户外移动机器人的商业化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信