Identification of surfaces using discrete triangular approximation of Gaussian curvature

Sripriya Ramaswamy, N. Shrikhande
{"title":"Identification of surfaces using discrete triangular approximation of Gaussian curvature","authors":"Sripriya Ramaswamy, N. Shrikhande","doi":"10.1117/12.216886","DOIUrl":null,"url":null,"abstract":"Object recognition is one of the prime probems of computer vision. One way of extracting information is to compute the Gaussian curvature for the given surfaces. The algorithm uses discrete approximation using triangularization methods to compute Gaussian curvature. The images are initially broken down into different segments and the Gaussian curvature for each pixel in the segment is computed with respect to its eight neighboring pixels. These computed values are then converted into intensity format for graphical visualization. The images with improved edge information have been taken from previous work. Synthetic images containing signal object scenes have been tested.","PeriodicalId":316044,"journal":{"name":"Optical Engineering Midwest","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Engineering Midwest","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.216886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Object recognition is one of the prime probems of computer vision. One way of extracting information is to compute the Gaussian curvature for the given surfaces. The algorithm uses discrete approximation using triangularization methods to compute Gaussian curvature. The images are initially broken down into different segments and the Gaussian curvature for each pixel in the segment is computed with respect to its eight neighboring pixels. These computed values are then converted into intensity format for graphical visualization. The images with improved edge information have been taken from previous work. Synthetic images containing signal object scenes have been tested.
使用高斯曲率的离散三角形近似识别曲面
物体识别是计算机视觉的主要问题之一。提取信息的一种方法是计算给定曲面的高斯曲率。该算法采用离散逼近的三角化方法计算高斯曲率。图像最初被分解成不同的片段,并且计算片段中每个像素相对于其八个相邻像素的高斯曲率。然后将这些计算值转换为强度格式以进行图形可视化。改进了边缘信息的图像是在前人的基础上得到的。包含信号对象场景的合成图像已经过测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信