An evolutionary simulated annealing algorithm for optimizing robotic task point ordering

D. Barral, J. Perrin, E. Dombre, A. Liégeois
{"title":"An evolutionary simulated annealing algorithm for optimizing robotic task point ordering","authors":"D. Barral, J. Perrin, E. Dombre, A. Liégeois","doi":"10.1109/ISATP.1999.782952","DOIUrl":null,"url":null,"abstract":"High productivity requires that robot manipulators perform complex tasks in minimum time. The paper presents an evolutionary simulated annealing (ESA) algorithm for optimizing an important class of complex tasks of point-to-point moves, such as mechanical assembly, electronic component insertion, and spot welding. This algorithm combines the basic principles of two major heuristic search methods: simulated annealing and genetic algorithms. Indeed, these methods are commonly used to solve the well-known traveling salesman problem (TSP), and the point ordering problem in robotics is very similar to the TSP in mathematics. The three algorithms have been implemented in a computer-aided design (CAD) software system, CATIA. Experimental results show success factors for using ESA.","PeriodicalId":326575,"journal":{"name":"Proceedings of the 1999 IEEE International Symposium on Assembly and Task Planning (ISATP'99) (Cat. No.99TH8470)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 IEEE International Symposium on Assembly and Task Planning (ISATP'99) (Cat. No.99TH8470)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISATP.1999.782952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

High productivity requires that robot manipulators perform complex tasks in minimum time. The paper presents an evolutionary simulated annealing (ESA) algorithm for optimizing an important class of complex tasks of point-to-point moves, such as mechanical assembly, electronic component insertion, and spot welding. This algorithm combines the basic principles of two major heuristic search methods: simulated annealing and genetic algorithms. Indeed, these methods are commonly used to solve the well-known traveling salesman problem (TSP), and the point ordering problem in robotics is very similar to the TSP in mathematics. The three algorithms have been implemented in a computer-aided design (CAD) software system, CATIA. Experimental results show success factors for using ESA.
机器人任务点排序优化的进化模拟退火算法
高生产率要求机器人在最短的时间内完成复杂的任务。本文提出了一种进化模拟退火(ESA)算法,用于优化一类重要的点对点移动复杂任务,如机械装配、电子元件插入和点焊。该算法结合了两种主要启发式搜索方法的基本原理:模拟退火算法和遗传算法。事实上,这些方法通常用于解决著名的旅行推销员问题(TSP),而机器人中的点排序问题与数学中的TSP非常相似。这三种算法在计算机辅助设计(CAD)软件系统CATIA中实现。实验结果显示了采用ESA的成功因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信