Retrieval Model Based on Word Translation Probabilities and the Degree of Association of Query Concept

Jun-Gil Kim, Kyung-Soon Lee
{"title":"Retrieval Model Based on Word Translation Probabilities and the Degree of Association of Query Concept","authors":"Jun-Gil Kim, Kyung-Soon Lee","doi":"10.3745/KIPSTB.2012.19B.3.183","DOIUrl":null,"url":null,"abstract":"One of the major challenge for retrieval performance is the word mismatch between user`s queries and documents in information retrieval. To solve the word mismatch problem, we propose a retrieval model based on the degree of association of query concept and word translation probabilities in translation-based model. The word translation probabilities are calculated based on the set of a sentence and its succeeding sentence pair. To validate the proposed method, we experimented on TREC AP test collection. The experimental results show that the proposed model achieved significant improvement over the language model and outperformed translation-based language model.","PeriodicalId":122700,"journal":{"name":"The Kips Transactions:partb","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Kips Transactions:partb","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/KIPSTB.2012.19B.3.183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the major challenge for retrieval performance is the word mismatch between user`s queries and documents in information retrieval. To solve the word mismatch problem, we propose a retrieval model based on the degree of association of query concept and word translation probabilities in translation-based model. The word translation probabilities are calculated based on the set of a sentence and its succeeding sentence pair. To validate the proposed method, we experimented on TREC AP test collection. The experimental results show that the proposed model achieved significant improvement over the language model and outperformed translation-based language model.
基于词翻译概率和查询概念关联度的检索模型
在信息检索中,用户查询和文档之间的词不匹配是影响检索性能的主要问题之一。为了解决词错配问题,在基于翻译的模型中,我们提出了一种基于查询概念关联度和词翻译概率的检索模型。单词翻译概率是基于一个句子及其后续句子对的集合来计算的。为了验证所提出的方法,我们在TREC AP测试集上进行了实验。实验结果表明,该模型在语言模型的基础上取得了显著的进步,优于基于翻译的语言模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信