A Novel Fuzzy-BELBIC Structure for the Adaptive Control of Satellite Attitude

Kosar Safari, Farhad Imani
{"title":"A Novel Fuzzy-BELBIC Structure for the Adaptive Control of Satellite Attitude","authors":"Kosar Safari, Farhad Imani","doi":"10.1115/imece2022-96034","DOIUrl":null,"url":null,"abstract":"\n The performance of the satellite not only relies on environmental factors but also is impacted by internal disturbances. The influential factors complicate the design of accurate controllers for attitude adjustments. The proposed research addresses this control problem by introducing a Brain Emotional Learning Based Intelligent Controller (BELBIC) tuned by a fuzzy inference system. Here, the learning weights and the gain inputs of the BELBIC are adjusted using a fuzzy inference system. In contrast, the initial parameters of the fuzzy inference system are adapted through the whale optimization algorithm. We validate and evaluate the performance of the proposed intelligent controller utilizing simulation studies. The results demonstrate the applicability and satisfactory performance of the proposed controller compared to the PID-BELBIC.","PeriodicalId":146276,"journal":{"name":"Volume 3: Advanced Materials: Design, Processing, Characterization and Applications; Advances in Aerospace Technology","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Advanced Materials: Design, Processing, Characterization and Applications; Advances in Aerospace Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2022-96034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of the satellite not only relies on environmental factors but also is impacted by internal disturbances. The influential factors complicate the design of accurate controllers for attitude adjustments. The proposed research addresses this control problem by introducing a Brain Emotional Learning Based Intelligent Controller (BELBIC) tuned by a fuzzy inference system. Here, the learning weights and the gain inputs of the BELBIC are adjusted using a fuzzy inference system. In contrast, the initial parameters of the fuzzy inference system are adapted through the whale optimization algorithm. We validate and evaluate the performance of the proposed intelligent controller utilizing simulation studies. The results demonstrate the applicability and satisfactory performance of the proposed controller compared to the PID-BELBIC.
一种新型卫星姿态自适应模糊belbic结构
卫星的性能不仅受环境因素的影响,还受内部扰动的影响。这些影响因素使姿态调整精确控制器的设计复杂化。本研究通过引入一种基于模糊推理系统的基于大脑情绪学习的智能控制器(BELBIC)来解决这一控制问题。在这里,使用模糊推理系统调整BELBIC的学习权值和增益输入。而模糊推理系统的初始参数则通过鲸鱼优化算法进行调整。我们利用仿真研究验证和评估所提出的智能控制器的性能。结果表明,与PID-BELBIC相比,所提控制器具有较好的适用性和较好的控制性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信