Cybersecurity Readiness for Automated Vehicles

S. Khan, N. Shiwakoti, P. Stasinopoulos, M. Warren
{"title":"Cybersecurity Readiness for Automated Vehicles","authors":"S. Khan, N. Shiwakoti, P. Stasinopoulos, M. Warren","doi":"10.1109/FAIML57028.2022.00012","DOIUrl":null,"url":null,"abstract":"Autonomous Vehicle (AV) is a rapidly evolving mobility technology with the potential to drastically alter the future of transportation. Despite the plethora of potential benefits that have prompted their eventual introduction, AVs may also be a source of unprecedented disruption for future travel eco-systems due to their vulnerability to cyber-threats. In this context, this work assesses AVs' cybersecurity readiness. It establishes a Causal Loop Diagram (CLD) based on the System Dynamics approach: a powerful technique inferred from system theory, which can synthesise the behaviour of complicated AV systems. Based on the CLD model, three feedback loops and a system archetype “Fixes-That-Fail” are envisioned, in which the growth in hacker capability, an unforeseen result of technology innovation, demands constant mitigation efforts. The most challenging aspect of this context is determining the trade-off between five components: i) the natural growth of AV technology; ii) stakeholders (communication service providers, road operators, automakers, AV consumers, repairers, and the general public) access to AV technology; iii) the measures to limit hackers' access to AV technology; iv) a pervasive dynamic strategy for circumventing hacker amplification; and v) the efficient usage of AV operating logfiles.","PeriodicalId":307172,"journal":{"name":"2022 International Conference on Frontiers of Artificial Intelligence and Machine Learning (FAIML)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Frontiers of Artificial Intelligence and Machine Learning (FAIML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FAIML57028.2022.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Autonomous Vehicle (AV) is a rapidly evolving mobility technology with the potential to drastically alter the future of transportation. Despite the plethora of potential benefits that have prompted their eventual introduction, AVs may also be a source of unprecedented disruption for future travel eco-systems due to their vulnerability to cyber-threats. In this context, this work assesses AVs' cybersecurity readiness. It establishes a Causal Loop Diagram (CLD) based on the System Dynamics approach: a powerful technique inferred from system theory, which can synthesise the behaviour of complicated AV systems. Based on the CLD model, three feedback loops and a system archetype “Fixes-That-Fail” are envisioned, in which the growth in hacker capability, an unforeseen result of technology innovation, demands constant mitigation efforts. The most challenging aspect of this context is determining the trade-off between five components: i) the natural growth of AV technology; ii) stakeholders (communication service providers, road operators, automakers, AV consumers, repairers, and the general public) access to AV technology; iii) the measures to limit hackers' access to AV technology; iv) a pervasive dynamic strategy for circumventing hacker amplification; and v) the efficient usage of AV operating logfiles.
自动驾驶汽车的网络安全准备
自动驾驶汽车(AV)是一项快速发展的移动技术,有可能彻底改变未来的交通方式。尽管自动驾驶汽车有很多潜在的好处,但由于容易受到网络威胁,它也可能成为未来旅行生态系统前所未有的破坏来源。在此背景下,本工作评估了自动驾驶汽车的网络安全准备情况。它建立了一个基于系统动力学方法的因果循环图(CLD):这是一种从系统理论推断出来的强大技术,可以综合复杂的自动驾驶系统的行为。基于CLD模型,设想了三个反馈循环和一个系统原型“修复失败”,其中黑客能力的增长是技术创新的不可预见的结果,需要不断的缓解努力。在这种情况下,最具挑战性的方面是确定五个组成部分之间的权衡:1)自动驾驶技术的自然增长;ii)利益相关者(通信服务提供商、道路运营商、汽车制造商、自动驾驶汽车消费者、维修商和公众)获得自动驾驶技术;iii)限制黑客接触AV技术的措施;Iv)规避黑客放大的普遍动态策略;v) AV操作日志文件的有效使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信