Real-time health status evaluation for electric power equipment based on cloud model

W. Zhao, Min Cui
{"title":"Real-time health status evaluation for electric power equipment based on cloud model","authors":"W. Zhao, Min Cui","doi":"10.1504/ijspm.2020.10028724","DOIUrl":null,"url":null,"abstract":"The health status evaluation of electric power equipment is an important issue with extensive concerns in power system community around the globe. In consideration of the uncertain characteristics of the monitoring data of wind turbines, a real-time health status evaluation method for wind turbines is presented employing the advantages of the cloud model in dealing with uncertain information. In the presented method, real-time data are analysed based on the well-established unsupervised clustering to partition the operational space. The health evaluation model is then trained based on the cloud model and cloud transformation, combining with SCADA historical state data and fully considering the uncertain information of wind turbines. The proposed model is applied to evaluate the health conditions of a 1.5 MW wind turbine located in northern China, and it is demonstrated that this model can detect the changing trend, and hence promote reliability of wind turbines, and reduce maintenance costs.","PeriodicalId":266151,"journal":{"name":"Int. J. Simul. Process. Model.","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Simul. Process. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijspm.2020.10028724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The health status evaluation of electric power equipment is an important issue with extensive concerns in power system community around the globe. In consideration of the uncertain characteristics of the monitoring data of wind turbines, a real-time health status evaluation method for wind turbines is presented employing the advantages of the cloud model in dealing with uncertain information. In the presented method, real-time data are analysed based on the well-established unsupervised clustering to partition the operational space. The health evaluation model is then trained based on the cloud model and cloud transformation, combining with SCADA historical state data and fully considering the uncertain information of wind turbines. The proposed model is applied to evaluate the health conditions of a 1.5 MW wind turbine located in northern China, and it is demonstrated that this model can detect the changing trend, and hence promote reliability of wind turbines, and reduce maintenance costs.
基于云模型的电力设备健康状态实时评估
电力设备健康状态评估是全球电力系统界普遍关注的重要问题。针对风力发电机组监测数据的不确定性特点,利用云模型在处理不确定性信息方面的优势,提出了一种风力发电机组健康状态实时评估方法。在该方法中,基于已建立的无监督聚类对实时数据进行分析以划分操作空间。然后,结合SCADA历史状态数据,充分考虑风力机的不确定性信息,基于云模型和云变换训练健康评估模型。将该模型应用于中国北方某1.5 MW风力发电机组的健康状况评估,结果表明,该模型能够检测出健康状况的变化趋势,从而提高了风力发电机组的可靠性,降低了维护成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信