A constructive proof of Masser’s Theorem

Alexander J. Barrios
{"title":"A constructive proof of Masser’s\n Theorem","authors":"Alexander J. Barrios","doi":"10.1090/conm/759/15265","DOIUrl":null,"url":null,"abstract":"The Modified Szpiro Conjecture, equivalent to the $abc$ Conjecture, states that for each $\\epsilon>0$, there are finitely many rational elliptic curves satisfying $N_{E}^{6+\\epsilon}<\\max\\!\\left\\{ \\left\\vert c_{4}^{3}\\right\\vert,c_{6}^{2}\\right\\} $ where $c_{4}$ and $c_{6}$ are the invariants associated to a minimal model of $E$ and $N_{E}$ is the conductor of $E$. We say $E$ is a good elliptic curve if $N_{E}^{6}<\\max\\!\\left\\{ \\left\\vert c_{4}^{3}\\right\\vert,c_{6}^{2}\\right\\} $. Masser showed that there are infinitely many good Frey curves. Here we give a constructive proof of this assertion.","PeriodicalId":351002,"journal":{"name":"The Golden Anniversary Celebration of the\n National Association of Mathematicians","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Golden Anniversary Celebration of the\n National Association of Mathematicians","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/759/15265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The Modified Szpiro Conjecture, equivalent to the $abc$ Conjecture, states that for each $\epsilon>0$, there are finitely many rational elliptic curves satisfying $N_{E}^{6+\epsilon}<\max\!\left\{ \left\vert c_{4}^{3}\right\vert,c_{6}^{2}\right\} $ where $c_{4}$ and $c_{6}$ are the invariants associated to a minimal model of $E$ and $N_{E}$ is the conductor of $E$. We say $E$ is a good elliptic curve if $N_{E}^{6}<\max\!\left\{ \left\vert c_{4}^{3}\right\vert,c_{6}^{2}\right\} $. Masser showed that there are infinitely many good Frey curves. Here we give a constructive proof of this assertion.
马瑟定理的构造性证明
与$abc$猜想等价的修正斯皮罗猜想指出,对于每个$\epsilon>0$,存在有限多条满足$N_{E}^{6+\epsilon}<\max\!\left\{ \left\vert c_{4}^{3}\right\vert,c_{6}^{2}\right\} $的有理椭圆曲线,其中$c_{4}$和$c_{6}$是与$E$的最小模型相关的不变量,$N_{E}$是$E$的导体。我们说$E$是一条好的椭圆曲线,如果$N_{E}^{6}<\max\!\left\{ \left\vert c_{4}^{3}\right\vert,c_{6}^{2}\right\} $。Masser证明了有无限多条好的Frey曲线。这里我们对这个论断给出建设性的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信