Tracking Nanostructural Evolution in Alloys: Large-Scale Analysis of Atom Probe Tomography Data on Blue Gene/L

S. Seal, M. Moody, A. Ceguerra, S. Ringer, K. Rajan, S. Aluru
{"title":"Tracking Nanostructural Evolution in Alloys: Large-Scale Analysis of Atom Probe Tomography Data on Blue Gene/L","authors":"S. Seal, M. Moody, A. Ceguerra, S. Ringer, K. Rajan, S. Aluru","doi":"10.1109/ICPP.2008.73","DOIUrl":null,"url":null,"abstract":"The advent of Local Electrode Atom Probe (LEAP) tomography is revolutionizing materials science by enabling near atomic scale imaging of materials. Analysis of three-dimensional atom probe tomography (APT) data holds the promise of relating combinatorial arrangement of atoms to material properties and enable better design and synthesis of complex materials. Existing techniques, which are serial and require O(n2) work for n atoms, do not scale to the hundred million large data sets produced by current generation atom probe microscopes. In this paper, we present an O(n) work autocorrelation based technique that reveals clustering of constituent atoms and spatial associations between them. We present an efficient parallelization of this method and show scaling on a 1,024 node Blue Gene/L. To our knowledge, this is the first parallel algorithm for the analysis of APT data, and together with our linear work autocorrelation technique, is demonstrated to easily scale to billion atom data sets expected in the very near future.","PeriodicalId":388408,"journal":{"name":"2008 37th International Conference on Parallel Processing","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 37th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2008.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The advent of Local Electrode Atom Probe (LEAP) tomography is revolutionizing materials science by enabling near atomic scale imaging of materials. Analysis of three-dimensional atom probe tomography (APT) data holds the promise of relating combinatorial arrangement of atoms to material properties and enable better design and synthesis of complex materials. Existing techniques, which are serial and require O(n2) work for n atoms, do not scale to the hundred million large data sets produced by current generation atom probe microscopes. In this paper, we present an O(n) work autocorrelation based technique that reveals clustering of constituent atoms and spatial associations between them. We present an efficient parallelization of this method and show scaling on a 1,024 node Blue Gene/L. To our knowledge, this is the first parallel algorithm for the analysis of APT data, and together with our linear work autocorrelation technique, is demonstrated to easily scale to billion atom data sets expected in the very near future.
合金中纳米结构演变的跟踪:Blue Gene/L原子探针断层扫描数据的大规模分析
局部电极原子探针(LEAP)断层扫描的出现是革命性的材料科学,使材料的近原子尺度成像。三维原子探针断层扫描(APT)数据的分析有望将原子的组合排列与材料特性联系起来,并使复杂材料的设计和合成变得更好。现有的技术是串行的,需要对n个原子进行O(n2)工作,不能扩展到当前一代原子探针显微镜产生的数以亿计的大型数据集。在本文中,我们提出了一种基于O(n)工作自相关的技术来揭示组成原子的聚类和它们之间的空间关联。我们提出了一种有效的并行化方法,并在1024个节点的Blue Gene/L上进行了缩放。据我们所知,这是第一个用于APT数据分析的并行算法,并且与我们的线性工作自相关技术一起,被证明可以在不久的将来轻松扩展到预计的十亿原子数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信