Efficient Feature Extraction for Robust Image Classification and Retrieval

Zhuo Liu, S. Wada
{"title":"Efficient Feature Extraction for Robust Image Classification and Retrieval","authors":"Zhuo Liu, S. Wada","doi":"10.1109/MMSP.2005.248596","DOIUrl":null,"url":null,"abstract":"In this paper, a new feature extraction method for robust image classification and retrieval is proposed. The robust image classification and retrieval systems are required when the images are not ideal such as geometrically distorted and/or contain additive noise. To construct an efficient feature space, an optimum linear transform is obtained by nonlinear optimization in learning process using a set of image samples. In the simulations, the method is experimentally applied to characterize wavelet packet representation of texture images robust to noise and geometrical (rotation and translation) distortion. Further, it is efficiently used for texture retrieval system to demonstrate the usefulness of the method. It is shown that the higher retrieval rate is achieved compared with the conventional approach such as discriminant analysis","PeriodicalId":191719,"journal":{"name":"2005 IEEE 7th Workshop on Multimedia Signal Processing","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE 7th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2005.248596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, a new feature extraction method for robust image classification and retrieval is proposed. The robust image classification and retrieval systems are required when the images are not ideal such as geometrically distorted and/or contain additive noise. To construct an efficient feature space, an optimum linear transform is obtained by nonlinear optimization in learning process using a set of image samples. In the simulations, the method is experimentally applied to characterize wavelet packet representation of texture images robust to noise and geometrical (rotation and translation) distortion. Further, it is efficiently used for texture retrieval system to demonstrate the usefulness of the method. It is shown that the higher retrieval rate is achieved compared with the conventional approach such as discriminant analysis
基于鲁棒图像分类与检索的高效特征提取
本文提出了一种新的鲁棒图像分类与检索的特征提取方法。当图像不理想,如几何扭曲和/或含有附加噪声时,需要鲁棒的图像分类和检索系统。为了构造有效的特征空间,利用一组图像样本在学习过程中进行非线性优化,得到最优的线性变换。在仿真中,实验应用该方法对纹理图像的小波包表示进行了对噪声和几何(旋转和平移)畸变的鲁棒性表征。最后,将该方法有效地应用于纹理检索系统,验证了该方法的有效性。结果表明,与传统的判别分析方法相比,该方法具有较高的检索率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信