{"title":"Quasi-Z-Source based Step-up Converter for Fuel Cell Vehicle","authors":"Aakash Singh, V. Siva, S. Singh, Avneet Kumar","doi":"10.1109/SeFeT55524.2022.9909229","DOIUrl":null,"url":null,"abstract":"Step-up converters with high voltage conversion ratio are applicable in photovoltaics, uninterrupted power supply (UPS), fuel cell system. This article presents a step-up converter based on quasi-Z-source switched-capacitor (QZSSC) network. Fewer number of component are connected in such a manner to achieve high step-up voltage gain. Operating principle, device stress and design equations are included in this paper. Furthermore, in MATLAB, the QZSSC network is simulated in continuous conduction mode (CCM), and a voltage control loop based PI controller is designed to improve the converter stability. Finally, laboratory prototype is built and experimental results are presented to verify the theoretical analysis.","PeriodicalId":262863,"journal":{"name":"2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation (SeFeT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SeFeT55524.2022.9909229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Step-up converters with high voltage conversion ratio are applicable in photovoltaics, uninterrupted power supply (UPS), fuel cell system. This article presents a step-up converter based on quasi-Z-source switched-capacitor (QZSSC) network. Fewer number of component are connected in such a manner to achieve high step-up voltage gain. Operating principle, device stress and design equations are included in this paper. Furthermore, in MATLAB, the QZSSC network is simulated in continuous conduction mode (CCM), and a voltage control loop based PI controller is designed to improve the converter stability. Finally, laboratory prototype is built and experimental results are presented to verify the theoretical analysis.