TDOA-based Target Localization Under Distance-dependent Noise Model

Feifei Pang, Pei Song, Jian-Yin Lu, Lihuan Huang, Zhixiang Gao
{"title":"TDOA-based Target Localization Under Distance-dependent Noise Model","authors":"Feifei Pang, Pei Song, Jian-Yin Lu, Lihuan Huang, Zhixiang Gao","doi":"10.1109/ICSPCC55723.2022.9984634","DOIUrl":null,"url":null,"abstract":"This paper focuses on target localization utilizing time difference of arrival (TDOA) measurements in 2-dimensional spaces. Differently from existing researches that the variance of TDOA measurement noise is independent of sensor-to-target distance, we set up the more practical model under the model of the distance-dependent noises. Firstly, we derive maximum likelihood estimator (MLE) and the Cramer-Rao lower bound (CRLB). Then, this instrumental variable (IVE) and this pseudolinear estimator (PLE) are introduced. Finally, simulation results show the bias norm and RMSE performance of PLE, IVE and MLE, and compared with the CRLB.","PeriodicalId":346917,"journal":{"name":"2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPCC55723.2022.9984634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on target localization utilizing time difference of arrival (TDOA) measurements in 2-dimensional spaces. Differently from existing researches that the variance of TDOA measurement noise is independent of sensor-to-target distance, we set up the more practical model under the model of the distance-dependent noises. Firstly, we derive maximum likelihood estimator (MLE) and the Cramer-Rao lower bound (CRLB). Then, this instrumental variable (IVE) and this pseudolinear estimator (PLE) are introduced. Finally, simulation results show the bias norm and RMSE performance of PLE, IVE and MLE, and compared with the CRLB.
距离依赖噪声模型下基于tdoa的目标定位
本文主要研究二维空间中利用到达时间差(TDOA)测量的目标定位问题。不同于已有研究认为TDOA测量噪声的方差与传感器到目标的距离无关,我们在距离相关的噪声模型下建立了更实用的模型。首先,我们推导了极大似然估计量(MLE)和Cramer-Rao下界(CRLB)。然后,介绍了该工具变量(IVE)和伪线性估计量(PLE)。最后,仿真结果显示了PLE、IVE和MLE的偏差范数和RMSE性能,并与CRLB进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信