Particle swarm optimization identification of IPMC actuator using fuzzy NARX model

H. Anh
{"title":"Particle swarm optimization identification of IPMC actuator using fuzzy NARX model","authors":"H. Anh","doi":"10.1109/ICCIS.2010.5518573","DOIUrl":null,"url":null,"abstract":"In this paper, a novel inverse fuzzy NARX model is used for modeling and identifying the IPMC-based actuator's inverse dynamic model. The highly nonlinear features of the IPMC-based actuator are thoroughly modeled based on the inverse fuzzy NARX model-based identification process using experimental input-output training data. This paper proposes the novel use of a modified particle swarm optimization (MPSO) to generate the inverse fuzzy NARX (IFN) model for a highly nonlinear IPMC actuator system. The results show that the novel inverse fuzzy NARX model optimized by MPSO yields outstanding performance and perfect accuracy.","PeriodicalId":445473,"journal":{"name":"2010 IEEE Conference on Cybernetics and Intelligent Systems","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Conference on Cybernetics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2010.5518573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, a novel inverse fuzzy NARX model is used for modeling and identifying the IPMC-based actuator's inverse dynamic model. The highly nonlinear features of the IPMC-based actuator are thoroughly modeled based on the inverse fuzzy NARX model-based identification process using experimental input-output training data. This paper proposes the novel use of a modified particle swarm optimization (MPSO) to generate the inverse fuzzy NARX (IFN) model for a highly nonlinear IPMC actuator system. The results show that the novel inverse fuzzy NARX model optimized by MPSO yields outstanding performance and perfect accuracy.
基于模糊NARX模型的IPMC执行器粒子群优化辨识
本文采用一种新的逆模糊NARX模型对基于ipmc的执行器的逆动力学模型进行建模和辨识。利用实验输入输出训练数据,采用基于逆模糊NARX模型的辨识过程,对基于ipmc的执行器的高度非线性特征进行了全面建模。针对高度非线性的IPMC作动器系统,提出了一种新的改进粒子群算法(MPSO)来生成逆模糊NARX (IFN)模型。结果表明,经MPSO优化的新型逆模糊NARX模型具有优异的性能和较好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信