Reclustering for large plasticity in clustered shape matching

M. Falkenstein, Ben Jones, J. Levine, Tamar Shinar, Adam W. Bargteil
{"title":"Reclustering for large plasticity in clustered shape matching","authors":"M. Falkenstein, Ben Jones, J. Levine, Tamar Shinar, Adam W. Bargteil","doi":"10.1145/3136457.3136473","DOIUrl":null,"url":null,"abstract":"In this paper, we revisit the problem online reclustering in clustered shape matching simulations and propose an approach that employs two nonlinear optimizations to create new clusters. The first optimization finds the embedding of particles and clusters into three-dimensional space that minimizes elastic energy. The second finds the optimal location for the new cluster, working in this embedded space. The result is an approach that is more robust in the presence of elastic deformation. We also experimentally verify that our clustered shape matching approach converges as the number of clusters increases, suggesting that our reclustering approach does not change the underlying material properties. Further, we demonstrate that particle resampling is not strictly necessary in our framework allowing us to trivially conserve volume. Finally, we highlight an error in estimating rotations in the original shape-matching work [Müller et al. 2005] that has been repeated in much of the follow up work.","PeriodicalId":159266,"journal":{"name":"Proceedings of the 10th International Conference on Motion in Games","volume":"209 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th International Conference on Motion in Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3136457.3136473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we revisit the problem online reclustering in clustered shape matching simulations and propose an approach that employs two nonlinear optimizations to create new clusters. The first optimization finds the embedding of particles and clusters into three-dimensional space that minimizes elastic energy. The second finds the optimal location for the new cluster, working in this embedded space. The result is an approach that is more robust in the presence of elastic deformation. We also experimentally verify that our clustered shape matching approach converges as the number of clusters increases, suggesting that our reclustering approach does not change the underlying material properties. Further, we demonstrate that particle resampling is not strictly necessary in our framework allowing us to trivially conserve volume. Finally, we highlight an error in estimating rotations in the original shape-matching work [Müller et al. 2005] that has been repeated in much of the follow up work.
聚类形状匹配中的大塑性重聚类
本文回顾了聚类形状匹配仿真中的在线聚类问题,并提出了一种采用两种非线性优化来创建新聚类的方法。第一个优化是将粒子和簇嵌入到三维空间中,使弹性能量最小化。第二个是为新集群找到最佳位置,在这个嵌入式空间中工作。结果是一种在存在弹性变形时更稳健的方法。我们还通过实验验证了我们的聚类形状匹配方法随着聚类数量的增加而收敛,这表明我们的重新聚类方法不会改变潜在的材料特性。此外,我们证明,在我们的框架中,粒子重采样并不是严格必要的,这使得我们可以轻松地保存体积。最后,我们强调了原始形状匹配工作中估计旋转的错误[m勒等人,2005],这在许多后续工作中重复出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信