Understanding the Quantile Regression

J. Yoon
{"title":"Understanding the Quantile Regression","authors":"J. Yoon","doi":"10.54913/hn.2022.3.1.157","DOIUrl":null,"url":null,"abstract":"In linear regression, the regression coefficient represents the change in the response variable produced by a one unit increase in the preditcor variable associated with that coefficient. The quantile regression parameter estimates the change in a specified quantile of the response variable produced by a one unit change in the predictor variable. In investigating the relationship between the employment growth and a set of predictors, the quantile regression allows comparing how some percentiles of the employment growth of firms may be more affected by certain firm’s characteristics than other percentiles. This is reflected in the change in the size of the regression coefficient. The quantile regression shows the effects of outliers are important when testing the Gibrat’s law.","PeriodicalId":337904,"journal":{"name":"The Korean Society of Human and Nature","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Korean Society of Human and Nature","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54913/hn.2022.3.1.157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In linear regression, the regression coefficient represents the change in the response variable produced by a one unit increase in the preditcor variable associated with that coefficient. The quantile regression parameter estimates the change in a specified quantile of the response variable produced by a one unit change in the predictor variable. In investigating the relationship between the employment growth and a set of predictors, the quantile regression allows comparing how some percentiles of the employment growth of firms may be more affected by certain firm’s characteristics than other percentiles. This is reflected in the change in the size of the regression coefficient. The quantile regression shows the effects of outliers are important when testing the Gibrat’s law.
理解分位数回归
在线性回归中,回归系数表示与该系数相关的预变量增加一个单位所产生的响应变量的变化。分位数回归参数估计由预测变量的一个单位变化所产生的响应变量的指定分位数的变化。在调查就业增长和一组预测因子之间的关系时,分位数回归允许比较公司的就业增长的某些百分位数可能比其他百分位数更受某些公司特征的影响。这反映在回归系数大小的变化上。分位数回归表明,在检验直布罗陀定律时,异常值的影响是重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信