Hyperbolic Voronoi Diagrams Made Easy

F. Nielsen, R. Nock
{"title":"Hyperbolic Voronoi Diagrams Made Easy","authors":"F. Nielsen, R. Nock","doi":"10.1109/ICCSA.2010.37","DOIUrl":null,"url":null,"abstract":"We present a simple framework to compute hyperbolic Voronoi diagrams of finite point sets as affine diagrams.We prove that bisectors in Klein's non-conformal disk model are hyperplanes that can be interpreted as power bisectors of Euclidean balls.Therefore our method simply consists in computing an equivalent clipped power diagram followed by a mapping transformation depending on the selected representation of the hyperbolic space (e.g., Poincare conformal disk or upper-plane representations). We discuss on extensions of this approach to weighted and $k$-order diagrams, and describe their dual triangulations.Finally, we consider two useful primitives on the hyperbolic Voronoi diagrams for designing tailored user interfaces of an image catalog browsing application in the hyperbolic disk:(1) finding nearest neighbors, and (2) computing smallest enclosing balls.","PeriodicalId":405597,"journal":{"name":"2010 International Conference on Computational Science and Its Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Computational Science and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSA.2010.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

We present a simple framework to compute hyperbolic Voronoi diagrams of finite point sets as affine diagrams.We prove that bisectors in Klein's non-conformal disk model are hyperplanes that can be interpreted as power bisectors of Euclidean balls.Therefore our method simply consists in computing an equivalent clipped power diagram followed by a mapping transformation depending on the selected representation of the hyperbolic space (e.g., Poincare conformal disk or upper-plane representations). We discuss on extensions of this approach to weighted and $k$-order diagrams, and describe their dual triangulations.Finally, we consider two useful primitives on the hyperbolic Voronoi diagrams for designing tailored user interfaces of an image catalog browsing application in the hyperbolic disk:(1) finding nearest neighbors, and (2) computing smallest enclosing balls.
双曲Voronoi图表变得简单
我们给出了一个简单的框架来计算有限点集作为仿射图的双曲Voronoi图。证明了克莱因非共形圆盘模型中的等分线是可以解释为欧氏球的幂等分线的超平面。因此,我们的方法简单地包括计算一个等效的剪切功率图,然后根据所选择的双曲空间表示(例如,庞加莱共形盘或上平面表示)进行映射变换。我们讨论了该方法在加权图和k阶图上的扩展,并描述了它们的对偶三角剖分。最后,我们考虑了双曲Voronoi图上的两个有用的原语,用于设计双曲磁盘上图像目录浏览应用程序的定制用户界面:(1)寻找最近邻,(2)计算最小封闭球。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信