Spatial-spectral preprocessing for volume-based endmember extraction algorithms using unsupervised clustering

G. Martín, A. Plaza
{"title":"Spatial-spectral preprocessing for volume-based endmember extraction algorithms using unsupervised clustering","authors":"G. Martín, A. Plaza","doi":"10.1109/WHISPERS.2010.5594886","DOIUrl":null,"url":null,"abstract":"Spectral unmixing is an important task in hyperspectral data exploitation. This approach first identifies a collection of spectrally pure constituent spectra, called endmembers, and then expresses the measured spectrum of each mixed pixel as a combination of endmembers weighted by fractions or abundances that indicate the proportion of each endmember present in the pixel. Over the last decade, several algorithms have been developed for automatic extraction of spectral end-members using volume-based concepts. These algorithms use the spectral information contained in the data, and often neglect the spatial information. In this paper, we develop a novel spatial-spectral preprocessing technique for volume-based endmember extraction algorithms intended to exploit spectral information more effectively by adequately incorporating spatial context. Our experimental results, conducted using a real hyperspectral data set collected by NASA's Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS) over the Cuprite Mining district in Nevada, reveal that the proposed approach can successfully integrate the spatial and spectral information contained in the input hyperspectral data.","PeriodicalId":193944,"journal":{"name":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2010.5594886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Spectral unmixing is an important task in hyperspectral data exploitation. This approach first identifies a collection of spectrally pure constituent spectra, called endmembers, and then expresses the measured spectrum of each mixed pixel as a combination of endmembers weighted by fractions or abundances that indicate the proportion of each endmember present in the pixel. Over the last decade, several algorithms have been developed for automatic extraction of spectral end-members using volume-based concepts. These algorithms use the spectral information contained in the data, and often neglect the spatial information. In this paper, we develop a novel spatial-spectral preprocessing technique for volume-based endmember extraction algorithms intended to exploit spectral information more effectively by adequately incorporating spatial context. Our experimental results, conducted using a real hyperspectral data set collected by NASA's Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS) over the Cuprite Mining district in Nevada, reveal that the proposed approach can successfully integrate the spatial and spectral information contained in the input hyperspectral data.
基于体的端元提取算法的无监督聚类空间光谱预处理
光谱解混是高光谱数据开发中的一项重要任务。该方法首先确定光谱纯成分光谱的集合,称为端元,然后将每个混合像素的测量光谱表示为端元的组合,这些端元由分数或丰度加权,表明每个端元在像素中所占的比例。在过去的十年中,已经开发了几种基于体积概念的光谱端元自动提取算法。这些算法利用了数据中包含的光谱信息,而往往忽略了空间信息。在本文中,我们开发了一种新的空间光谱预处理技术,用于基于体的端元提取算法,旨在通过充分结合空间背景更有效地利用光谱信息。利用美国宇航局机载可见光红外成像光谱仪(AVIRIS)在内华达州铜矿矿区采集的真实高光谱数据集进行的实验结果表明,该方法可以成功地整合输入高光谱数据中包含的空间和光谱信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信