Tree resolution proofs of the weak pigeon-hole principle

Stefan S. Dantchev, Søren Riis
{"title":"Tree resolution proofs of the weak pigeon-hole principle","authors":"Stefan S. Dantchev, Søren Riis","doi":"10.1109/CCC.2001.933873","DOIUrl":null,"url":null,"abstract":"We prove that any optimal tree resolution proof of PHP/sub n//sup m/ is of size 2/sup /spl theta/(n log n)/, independently from m, even if it is infinity. So far, only a 2/sup /spl Omega/(n)/ lower bound has been known in the general case. We also show that any, not necessarily optimal, regular tree resolution proof PHP/sub n//sup m/ is bounded by 2/sup O(n log m)/. To the best of our knowledge, this is the first time the worst case proof complexity has been considered. Finally, we discuss possible connections of our result to Riis' (1999) complexity gap theorem for tree resolution.","PeriodicalId":240268,"journal":{"name":"Proceedings 16th Annual IEEE Conference on Computational Complexity","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 16th Annual IEEE Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2001.933873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

We prove that any optimal tree resolution proof of PHP/sub n//sup m/ is of size 2/sup /spl theta/(n log n)/, independently from m, even if it is infinity. So far, only a 2/sup /spl Omega/(n)/ lower bound has been known in the general case. We also show that any, not necessarily optimal, regular tree resolution proof PHP/sub n//sup m/ is bounded by 2/sup O(n log m)/. To the best of our knowledge, this is the first time the worst case proof complexity has been considered. Finally, we discuss possible connections of our result to Riis' (1999) complexity gap theorem for tree resolution.
弱鸽子洞原理的树分辨率证明
我们证明了PHP/ subn //sup m/的最优树分辨率证明的大小是2/sup /spl // (n log n)/,独立于m,即使它是无穷大。到目前为止,一般情况下只知道2/sup / sp1 /(n)/下界。我们还证明了任何,不一定是最优的,常规树分辨率证明PHP/sub n//sup m/的边界是2/sup O(n log m)/。据我们所知,这是第一次考虑最坏情况下的证明复杂性。最后,我们讨论了我们的结果与Riis(1999)树分辨率复杂性间隙定理的可能联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信