Kaito Furuo, Kento Morita, Tomohito Hagi, Tomoki Nakamura, T. Wakabayashi
{"title":"Automatic benign and malignant estimation of bone tumors using deep learning","authors":"Kaito Furuo, Kento Morita, Tomohito Hagi, Tomoki Nakamura, T. Wakabayashi","doi":"10.1109/CYBCONF51991.2021.9464132","DOIUrl":null,"url":null,"abstract":"The bone tumor causes the bone pain and swelling, and is firstly diagnosed in a local hospital in many cases. This has become a problem in recent years, and also the benign and malignant nature of bone tumors is difficult and requires a great deal of effort even for medical specialists. Therefore, the development of a system to automatically estimate the benign or malignant nature of bone tumors is required. In this study, we propose a method for automatically estimating the benignity or malignancy of bone tumors using deep learning. We fine-tuned VGG16 and ResNet152 trained on ImageNet using image patches extracted from 38 plain X-ray images of 3 patients. Results on patch-level classification showed that VGG16 achieved higher estimation accuracy (f1-score of 0.790) than ResNet152 (f1-score of 0.784). We also performed the tumor-level classification experiment in which 4 benign and 6 malignant tumors were correctly classified to the appropriate class.","PeriodicalId":231194,"journal":{"name":"2021 5th IEEE International Conference on Cybernetics (CYBCONF)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 5th IEEE International Conference on Cybernetics (CYBCONF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBCONF51991.2021.9464132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The bone tumor causes the bone pain and swelling, and is firstly diagnosed in a local hospital in many cases. This has become a problem in recent years, and also the benign and malignant nature of bone tumors is difficult and requires a great deal of effort even for medical specialists. Therefore, the development of a system to automatically estimate the benign or malignant nature of bone tumors is required. In this study, we propose a method for automatically estimating the benignity or malignancy of bone tumors using deep learning. We fine-tuned VGG16 and ResNet152 trained on ImageNet using image patches extracted from 38 plain X-ray images of 3 patients. Results on patch-level classification showed that VGG16 achieved higher estimation accuracy (f1-score of 0.790) than ResNet152 (f1-score of 0.784). We also performed the tumor-level classification experiment in which 4 benign and 6 malignant tumors were correctly classified to the appropriate class.