Distributed Sensor Calibration by Gaussian Approximation

Luís C. B. Silva, I. B. V. Costa, Jean C. C. Silva, J. L. A. Samatelo, M. Segatto, M. Pontes
{"title":"Distributed Sensor Calibration by Gaussian Approximation","authors":"Luís C. B. Silva, I. B. V. Costa, Jean C. C. Silva, J. L. A. Samatelo, M. Segatto, M. Pontes","doi":"10.1109/IMOC43827.2019.9317619","DOIUrl":null,"url":null,"abstract":"The calibration process is the key factor that contributes to the accuracy and repeatability of the sensor operation in general. To improve the performance of distributed sensors in optical fibers, we will present in this paper an alternative approach to performing their calibration. The proposed calibration method consists of an algorithm that represents the sensor signal by a sum of Gaussian functions and then determines the new Gaussian parameters for the signal to be corrected. Such methodology allows obtaining different spatial resolutions according to the precision range required. For example, spatial resolutions of 29.82 cm and 1.8 cm were obtained for hot spots of 50 cm and 3 cm, respectively.","PeriodicalId":175865,"journal":{"name":"2019 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMOC43827.2019.9317619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The calibration process is the key factor that contributes to the accuracy and repeatability of the sensor operation in general. To improve the performance of distributed sensors in optical fibers, we will present in this paper an alternative approach to performing their calibration. The proposed calibration method consists of an algorithm that represents the sensor signal by a sum of Gaussian functions and then determines the new Gaussian parameters for the signal to be corrected. Such methodology allows obtaining different spatial resolutions according to the precision range required. For example, spatial resolutions of 29.82 cm and 1.8 cm were obtained for hot spots of 50 cm and 3 cm, respectively.
基于高斯近似的分布式传感器校准
一般来说,校准过程是影响传感器工作精度和可重复性的关键因素。为了提高光纤中分布式传感器的性能,我们将在本文中提出一种执行其校准的替代方法。所提出的校准方法包括一种算法,该算法将传感器信号用高斯函数和表示,然后确定待校正信号的新高斯参数。这种方法可以根据所需的精度范围获得不同的空间分辨率。例如,50 cm和3 cm的热点分别获得29.82 cm和1.8 cm的空间分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信