Application of Nonlinear Estimation Strategies on a Magnetorheological Suspension System with Skyhook Control

Andrew S. Lee, S. Andrew Gadsden, M. Al-Shabi
{"title":"Application of Nonlinear Estimation Strategies on a Magnetorheological Suspension System with Skyhook Control","authors":"Andrew S. Lee, S. Andrew Gadsden, M. Al-Shabi","doi":"10.1109/IEMTRONICS51293.2020.9216390","DOIUrl":null,"url":null,"abstract":"Extraction of state values from noisy or uncertain systems is important for feedback control because it improves the accuracy of the error signal. For known linear systems with Gaussian white noise, the Kalman Alter provides optimal state estimates in terms of state error. However, electromechanical systems, such as magnetorheological dampers, typically exhibit nonlinear behaviour. In this paper, a new nonlinear estimation method known as the extended sliding innovation filter is presented and applied on a magnetorheological suspension system. The state estimates are extracted from a quarter car model with an active magnetorheological suspension system with skyhook control. The results are compared with the popular extended Kalman filter, and future experiments are considered.","PeriodicalId":269697,"journal":{"name":"2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMTRONICS51293.2020.9216390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Extraction of state values from noisy or uncertain systems is important for feedback control because it improves the accuracy of the error signal. For known linear systems with Gaussian white noise, the Kalman Alter provides optimal state estimates in terms of state error. However, electromechanical systems, such as magnetorheological dampers, typically exhibit nonlinear behaviour. In this paper, a new nonlinear estimation method known as the extended sliding innovation filter is presented and applied on a magnetorheological suspension system. The state estimates are extracted from a quarter car model with an active magnetorheological suspension system with skyhook control. The results are compared with the popular extended Kalman filter, and future experiments are considered.
非线性估计策略在天钩控制磁流变悬架系统中的应用
从噪声或不确定系统中提取状态值对于反馈控制非常重要,因为它可以提高误差信号的精度。对于已知的具有高斯白噪声的线性系统,Kalman Alter根据状态误差提供了最优状态估计。然而,机电系统,如磁流变阻尼器,通常表现出非线性行为。本文提出了一种新的非线性估计方法——扩展滑动创新滤波器,并将其应用于磁流变悬架系统。状态估计是从一个四分之一汽车模型中提取的,该模型具有天钩控制的主动磁流变悬架系统。结果与流行的扩展卡尔曼滤波进行了比较,并对未来的实验进行了考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信