Evaluation of security risks using Apriori algorithm

W. Abbass, Amine Baïna, M. Bellafkih
{"title":"Evaluation of security risks using Apriori algorithm","authors":"W. Abbass, Amine Baïna, M. Bellafkih","doi":"10.1145/3419604.3419789","DOIUrl":null,"url":null,"abstract":"The progress of IT technologies offers many means to collect and store an extremely large quantity of data and conveys a prodigious quantity of information in several sectors of activity. However, this progress is not only exposed to classic operational risks such as fire or blackouts, but also to various viruses and data theft. These extremely technologically complex risks have risen a big challenge at responding to a large-scale of intangible threats within an industry of perpetual change. Wherefore, the value of Security Risk Assessment \"SRA\" at ensuring the protection of the organizations' business services. However, conducting SRA is difficult and time-consuming and its results may not project the risky behaviors which often leads to unnecessary controls being implemented. Therefore, we tolerate using the Apriori algorithm as a prominent approach accurately determining the threat sources emerging within the risky behaviors. The Apriori algorithm is very useful at better mapping the relationship between organization critical assets and the potential threats-vulnerabilities. We use a history dataset of security risks in order to determine association rules between vulnerabilities and the potential threats. The algorithm performs classification which successfully reduces assessment time. As a result, the improved algorithm undertakes recommendations for a better SRA conduction.","PeriodicalId":250715,"journal":{"name":"Proceedings of the 13th International Conference on Intelligent Systems: Theories and Applications","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Intelligent Systems: Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3419604.3419789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The progress of IT technologies offers many means to collect and store an extremely large quantity of data and conveys a prodigious quantity of information in several sectors of activity. However, this progress is not only exposed to classic operational risks such as fire or blackouts, but also to various viruses and data theft. These extremely technologically complex risks have risen a big challenge at responding to a large-scale of intangible threats within an industry of perpetual change. Wherefore, the value of Security Risk Assessment "SRA" at ensuring the protection of the organizations' business services. However, conducting SRA is difficult and time-consuming and its results may not project the risky behaviors which often leads to unnecessary controls being implemented. Therefore, we tolerate using the Apriori algorithm as a prominent approach accurately determining the threat sources emerging within the risky behaviors. The Apriori algorithm is very useful at better mapping the relationship between organization critical assets and the potential threats-vulnerabilities. We use a history dataset of security risks in order to determine association rules between vulnerabilities and the potential threats. The algorithm performs classification which successfully reduces assessment time. As a result, the improved algorithm undertakes recommendations for a better SRA conduction.
基于Apriori算法的安全风险评估
信息技术的进步提供了许多方法来收集和存储大量的数据,并在几个活动部门中传递大量的信息。然而,这一进展不仅暴露于火灾或停电等经典操作风险,而且还暴露于各种病毒和数据被盗。这些技术上极其复杂的风险在应对一个不断变化的行业中的大规模无形威胁方面提出了巨大挑战。因此,安全风险评估(SRA)的价值在于确保组织的业务服务得到保护。然而,进行SRA是困难和耗时的,其结果可能无法预测风险行为,这往往导致实施不必要的控制。因此,我们容忍使用Apriori算法作为准确确定危险行为中出现的威胁来源的突出方法。Apriori算法在更好地映射组织关键资产与潜在威胁-漏洞之间的关系方面非常有用。我们使用安全风险的历史数据集来确定漏洞和潜在威胁之间的关联规则。该算法进行分类,成功地减少了评估时间。因此,改进的算法为更好的SRA传导提供了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信