{"title":"Detecção de malware metamórfico baseada na indexação de grafos de dependência de dados","authors":"Luis Rojas Aguilera, Eduardo Souto, G. B. Martins","doi":"10.5753/sbseg.2017.19505","DOIUrl":null,"url":null,"abstract":"O metamorfismo e a mutação de código têm sido utilizados com sucesso pelos criadores de malware para gerar códigos obfuscados sem alterar as funcionalidades originais, tornando-os mais difíceis de detectar. Este trabalho apresenta uma abordagem para a identificação de malware metamórfico através extração de características a partir de Grafos de Dependência de Dados, para a construção de um índice de classificação que seja capaz de reconhecer de forma rápida e precisa se um determinado código suspeito pertence à uma família de malware. Os resultados experimentais sobre 3045 amostras de vírus metamórficos apresentam taxas médias de acurácia superiores a maioria dos antivírus comerciais.","PeriodicalId":322419,"journal":{"name":"Anais do XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg 2017)","volume":"9 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVII Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais (SBSeg 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbseg.2017.19505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
O metamorfismo e a mutação de código têm sido utilizados com sucesso pelos criadores de malware para gerar códigos obfuscados sem alterar as funcionalidades originais, tornando-os mais difíceis de detectar. Este trabalho apresenta uma abordagem para a identificação de malware metamórfico através extração de características a partir de Grafos de Dependência de Dados, para a construção de um índice de classificação que seja capaz de reconhecer de forma rápida e precisa se um determinado código suspeito pertence à uma família de malware. Os resultados experimentais sobre 3045 amostras de vírus metamórficos apresentam taxas médias de acurácia superiores a maioria dos antivírus comerciais.