{"title":"Comparison on Trapezoidal and Simpson’s Rule for Unequal Data Space","authors":"M. N. Dhali, Mohammad Farhad Bulbul, U. Sadiya","doi":"10.5815/ijmsc.2019.04.04","DOIUrl":null,"url":null,"abstract":"Numerical integration compromises a broad family of algorithm for calculating the numerical value of a definite integral. Since some of the integration cannot be solved analytically, numerical integration is the most popular way to obtain the solution. Many different methods are applied and used in an attempt to solve numerical integration for unequal data space. Trapezoidal and Simpson’s rule are widely used to solve numerical integration problems. Our paper mainly concentrates on identifying the method which provides more accurate result. In order to accomplish the exactness we use some numerical examples and find their solutions. Then we compare them with the analytical result and calculate their corresponding error. The minimum error represents the best method. The numerical solutions are in good agreement with the exact result and get a higher accuracy in the solutions.","PeriodicalId":312036,"journal":{"name":"International Journal of Mathematical Sciences and Computing","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Sciences and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijmsc.2019.04.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Numerical integration compromises a broad family of algorithm for calculating the numerical value of a definite integral. Since some of the integration cannot be solved analytically, numerical integration is the most popular way to obtain the solution. Many different methods are applied and used in an attempt to solve numerical integration for unequal data space. Trapezoidal and Simpson’s rule are widely used to solve numerical integration problems. Our paper mainly concentrates on identifying the method which provides more accurate result. In order to accomplish the exactness we use some numerical examples and find their solutions. Then we compare them with the analytical result and calculate their corresponding error. The minimum error represents the best method. The numerical solutions are in good agreement with the exact result and get a higher accuracy in the solutions.