GLAD: A Global-to-Local Anomaly Detector

Aitor Artola, Yannis Kolodziej, J. Morel, T. Ehret
{"title":"GLAD: A Global-to-Local Anomaly Detector","authors":"Aitor Artola, Yannis Kolodziej, J. Morel, T. Ehret","doi":"10.1109/WACV56688.2023.00546","DOIUrl":null,"url":null,"abstract":"Learning to detect automatic anomalies in production plants remains a machine learning challenge. Since anomalies by definition cannot be learned, their detection must rely on a very accurate \"normality model\". To this aim, we introduce here a global-to-local Gaussian model for neural network features, learned from a set of normal images. This probabilistic model enables unsupervised anomaly detection. A global Gaussian mixture model of the features is first learned using all available features from normal data. This global Gaussian mixture model is then localized by an adaptation of the K-MLE algorithm, which learns a spatial weight map for each Gaussian. These weights are then used instead of the mixture weights to detect anomalies. This method enables precise modeling of complex data, even with limited data. Applied on WideResnet50-2 features, our approach outperforms the previous state of the art on the MVTec dataset, particularly on the object category. It is robust to perturbations that are frequent in production lines, such as imperfect alignment, and is on par in terms of memory and computation time with the previous state of the art.","PeriodicalId":270631,"journal":{"name":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV56688.2023.00546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Learning to detect automatic anomalies in production plants remains a machine learning challenge. Since anomalies by definition cannot be learned, their detection must rely on a very accurate "normality model". To this aim, we introduce here a global-to-local Gaussian model for neural network features, learned from a set of normal images. This probabilistic model enables unsupervised anomaly detection. A global Gaussian mixture model of the features is first learned using all available features from normal data. This global Gaussian mixture model is then localized by an adaptation of the K-MLE algorithm, which learns a spatial weight map for each Gaussian. These weights are then used instead of the mixture weights to detect anomalies. This method enables precise modeling of complex data, even with limited data. Applied on WideResnet50-2 features, our approach outperforms the previous state of the art on the MVTec dataset, particularly on the object category. It is robust to perturbations that are frequent in production lines, such as imperfect alignment, and is on par in terms of memory and computation time with the previous state of the art.
一个全局到局部的异常探测器
学习检测生产工厂中的自动异常仍然是机器学习的一个挑战。由于异常的定义是无法学习的,它们的检测必须依赖于一个非常精确的“正态模型”。为此,我们引入了一种从一组正常图像中学习的神经网络特征的全局到局部高斯模型。该概率模型支持无监督异常检测。首先利用正常数据中所有可用的特征来学习特征的全局高斯混合模型。然后通过K-MLE算法的自适应对该全局高斯混合模型进行局部化,该算法为每个高斯模型学习空间权重图。然后使用这些权重代替混合权重来检测异常。这种方法可以对复杂数据进行精确建模,即使数据有限。应用于WideResnet50-2特征,我们的方法在MVTec数据集上优于以前的技术状态,特别是在对象类别上。它对生产线中经常出现的扰动(例如不完美对齐)具有鲁棒性,并且在内存和计算时间方面与以前的技术水平相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信