M. Sokolich, D. Docter, Y. Brown, A. Kramer, J. Jensen, W. Stanchina, S. Thomas, C. Fields, D. A. Ahmari, M. Lui, R. Martinez, J. Duvall
{"title":"A low power 52.9 GHz static divider implemented in a manufacturable 180 GHz AlInAs/InGaAs HBT IC technology","authors":"M. Sokolich, D. Docter, Y. Brown, A. Kramer, J. Jensen, W. Stanchina, S. Thomas, C. Fields, D. A. Ahmari, M. Lui, R. Martinez, J. Duvall","doi":"10.1109/GAAS.1998.722642","DOIUrl":null,"url":null,"abstract":"We have demonstrated a 52.9 GHz static 1/8 divider in an AlInAs/InGaAs HBT technology. To our knowledge this is the fastest static divider reported in any semiconductor technology. The divider was realized in a high yield optical lithography triple mesa HBT process. At maximum speed, power consumption was 40 mW/flip-flop. A second 1/8 divider, designed for lower power but using the same size transistors, consumed 8.6 mW/flip-flop at 35 GHz. Sensitivity was excellent with the high-speed version operating from DC to 48 GHz with less than 0 dBm input power. Uniformity and reproducibility were also demonstrated; all functional dividers operated above 45 GHz on-wafer and the extrapolated yield of dividers indicates that the process is capable of supporting 500-1000 transistor designs. Circuit performance was relatively insensitive to the details of the device epitaxial structure indicating a highly robust and manufacturable process.","PeriodicalId":288170,"journal":{"name":"GaAs IC Symposium. IEEE Gallium Arsenide Integrated Circuit Symposium. 20th Annual. Technical Digest 1998 (Cat. No.98CH36260)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GaAs IC Symposium. IEEE Gallium Arsenide Integrated Circuit Symposium. 20th Annual. Technical Digest 1998 (Cat. No.98CH36260)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GAAS.1998.722642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35
Abstract
We have demonstrated a 52.9 GHz static 1/8 divider in an AlInAs/InGaAs HBT technology. To our knowledge this is the fastest static divider reported in any semiconductor technology. The divider was realized in a high yield optical lithography triple mesa HBT process. At maximum speed, power consumption was 40 mW/flip-flop. A second 1/8 divider, designed for lower power but using the same size transistors, consumed 8.6 mW/flip-flop at 35 GHz. Sensitivity was excellent with the high-speed version operating from DC to 48 GHz with less than 0 dBm input power. Uniformity and reproducibility were also demonstrated; all functional dividers operated above 45 GHz on-wafer and the extrapolated yield of dividers indicates that the process is capable of supporting 500-1000 transistor designs. Circuit performance was relatively insensitive to the details of the device epitaxial structure indicating a highly robust and manufacturable process.