Analysis on Static Current Sharing of N-Paralleled Silicon Carbide MOSFETs

Yang He, Xun Wang, Junming Zhang, Shuai Shao, Han Li, Cheng Luo
{"title":"Analysis on Static Current Sharing of N-Paralleled Silicon Carbide MOSFETs","authors":"Yang He, Xun Wang, Junming Zhang, Shuai Shao, Han Li, Cheng Luo","doi":"10.1109/ECCE47101.2021.9595666","DOIUrl":null,"url":null,"abstract":"The influences of on-resistances and parasitic elements on the static current sharing of N-paralleled discrete silicon carbide (SiC) MOSFETs are analyzed in this paper. First of all, the limitation of self-balancing effect of MOSFETs caused by the positive temperature dependent on-resistance is quantitatively analyzed. From a statistical analysis, the current sharing distribution according to the spread of on-resistances is presented, which helps to screen the proper devices based on the current sharing requirement. Furthermore, a general circuit model is proposed to analyze the effect of inevitable circuit parasitic elements on current sharing with a given current slew rate. With the recursive circuit model, current imbalance contributed by parasitic resistances and inductances can be separately calculated, which can be used to guide the hardware design to improve current sharing in a real converter. The theoretical analysis is verified by experimental results.","PeriodicalId":349891,"journal":{"name":"2021 IEEE Energy Conversion Congress and Exposition (ECCE)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Energy Conversion Congress and Exposition (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE47101.2021.9595666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The influences of on-resistances and parasitic elements on the static current sharing of N-paralleled discrete silicon carbide (SiC) MOSFETs are analyzed in this paper. First of all, the limitation of self-balancing effect of MOSFETs caused by the positive temperature dependent on-resistance is quantitatively analyzed. From a statistical analysis, the current sharing distribution according to the spread of on-resistances is presented, which helps to screen the proper devices based on the current sharing requirement. Furthermore, a general circuit model is proposed to analyze the effect of inevitable circuit parasitic elements on current sharing with a given current slew rate. With the recursive circuit model, current imbalance contributed by parasitic resistances and inductances can be separately calculated, which can be used to guide the hardware design to improve current sharing in a real converter. The theoretical analysis is verified by experimental results.
n并联碳化硅mosfet的静态共流分析
分析了导通电阻和寄生元件对n并联离散碳化硅mosfet静态电流共享的影响。首先,定量分析了温度正相关电阻对mosfet自平衡效应的限制。通过统计分析,给出了导通电阻分布的电流分担分布,有助于根据电流分担要求筛选合适的器件。在此基础上,提出了一个通用电路模型,分析了在给定电流转换率的情况下,不可避免的电路寄生元件对电流共享的影响。利用递归电路模型,可以分别计算寄生电阻和电感造成的电流不平衡,从而指导硬件设计,提高实际变换器的电流共享。实验结果验证了理论分析的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信