Cell Grid Architecture for Maritime Route Prediction on AIS Data Streams

Ciprian Amariei, Paul Diac, Emanuel Onica, Valentin Rosca
{"title":"Cell Grid Architecture for Maritime Route Prediction on AIS Data Streams","authors":"Ciprian Amariei, Paul Diac, Emanuel Onica, Valentin Rosca","doi":"10.1145/3210284.3220503","DOIUrl":null,"url":null,"abstract":"The 2018 Grand Challenge targets the problem of accurate predictions on data streams produced by automatic identification system (AIS) equipment, describing naval traffic. This paper reports the technical details of a custom solution, which exposes multiple tuning parameters, making its configurability one of the main strengths. Our solution employs a cell grid architecture essentially based on a sequence of hash tables, specifically built for the targeted use case. This makes it particularly effective in prediction on AIS data, obtaining a high accuracy and scalable performance results. Moreover, the architecture proposed accommodates also an optionally semi-supervised learning process besides the basic supervised mode.","PeriodicalId":412438,"journal":{"name":"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems","volume":"334 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3210284.3220503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The 2018 Grand Challenge targets the problem of accurate predictions on data streams produced by automatic identification system (AIS) equipment, describing naval traffic. This paper reports the technical details of a custom solution, which exposes multiple tuning parameters, making its configurability one of the main strengths. Our solution employs a cell grid architecture essentially based on a sequence of hash tables, specifically built for the targeted use case. This makes it particularly effective in prediction on AIS data, obtaining a high accuracy and scalable performance results. Moreover, the architecture proposed accommodates also an optionally semi-supervised learning process besides the basic supervised mode.
基于AIS数据流的海上航路预测单元格结构
2018年大挑战的目标是对描述海上交通的自动识别系统(AIS)设备产生的数据流进行准确预测。本文报告了自定义解决方案的技术细节,该解决方案公开了多个调优参数,使其可配置性成为主要优势之一。我们的解决方案采用了基于哈希表序列的单元格架构,专门为目标用例构建。这使得它在AIS数据预测中特别有效,获得高精度和可扩展的性能结果。此外,所提出的架构除了基本的监督模式外,还可容纳可选的半监督学习过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信