Williams-Paul Nwadiugwu, Dong‐Seong Kim, Jae-Min Lee
{"title":"Energy-efficient real-time deployment of mobile sensors in disaster-prone location","authors":"Williams-Paul Nwadiugwu, Dong‐Seong Kim, Jae-Min Lee","doi":"10.1504/IJCNDS.2019.10015202","DOIUrl":null,"url":null,"abstract":"Recent research works on real-time robot-assisted mobile sensor deployment have become rapid, as they tend to accomplish problem-solving tasks at both safe location and unsafe location. This paper proposes a technique to achieve a real-time energy-efficient deployment of mobile sensors in a disaster-prone location using a path-tracking algorithm. An enhanced path-tracking algorithm was introduced to be able to deploy mobile sensors in both presence and absence of obstacles. The simulation result investigates the real-time performances of the mobile sensor nodes deployment with respect to factors such as the minimal energy consumption of the nodes with neighbourhood sharing scheme, the end-to-end system threshold and the time variance for the deployed sensor nodes to reach the target location and back to the base station.","PeriodicalId":209177,"journal":{"name":"Int. J. Commun. Networks Distributed Syst.","volume":"129 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Commun. Networks Distributed Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCNDS.2019.10015202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Recent research works on real-time robot-assisted mobile sensor deployment have become rapid, as they tend to accomplish problem-solving tasks at both safe location and unsafe location. This paper proposes a technique to achieve a real-time energy-efficient deployment of mobile sensors in a disaster-prone location using a path-tracking algorithm. An enhanced path-tracking algorithm was introduced to be able to deploy mobile sensors in both presence and absence of obstacles. The simulation result investigates the real-time performances of the mobile sensor nodes deployment with respect to factors such as the minimal energy consumption of the nodes with neighbourhood sharing scheme, the end-to-end system threshold and the time variance for the deployed sensor nodes to reach the target location and back to the base station.