PDA: Privacy-Preserving Data Aggregation for Information Collection

Wenbo He, Xue Liu, Hoang Nguyen, K. Nahrstedt, T. Abdelzaher
{"title":"PDA: Privacy-Preserving Data Aggregation for Information Collection","authors":"Wenbo He, Xue Liu, Hoang Nguyen, K. Nahrstedt, T. Abdelzaher","doi":"10.1145/1993042.1993048","DOIUrl":null,"url":null,"abstract":"Providing efficient data aggregation while preserving data privacy is a challenging problem in wireless sensor networks research. In this article, we present two privacy-preserving data aggregation schemes for additive aggregation functions, which can be extended to approximate MAX/MIN aggregation functions. The first scheme---Cluster-based Private Data Aggregation (CPDA)---leverages clustering protocol and algebraic properties of polynomials. It has the advantage of incurring less communication overhead. The second scheme---Slice-Mix-AggRegaTe (SMART)---builds on slicing techniques and the associative property of addition. It has the advantage of incurring less computation overhead. The goal of our work is to bridge the gap between collaborative data collection by wireless sensor networks and data privacy. We assess the two schemes by privacy-preservation efficacy, communication overhead, and data aggregation accuracy. We present simulation results of our schemes and compare their performance to a typical data aggregation scheme (TAG), where no data privacy protection is provided. Results show the efficacy and efficiency of our schemes.","PeriodicalId":263540,"journal":{"name":"ACM Trans. Sens. Networks","volume":"&NA; 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Sens. Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1993042.1993048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

Providing efficient data aggregation while preserving data privacy is a challenging problem in wireless sensor networks research. In this article, we present two privacy-preserving data aggregation schemes for additive aggregation functions, which can be extended to approximate MAX/MIN aggregation functions. The first scheme---Cluster-based Private Data Aggregation (CPDA)---leverages clustering protocol and algebraic properties of polynomials. It has the advantage of incurring less communication overhead. The second scheme---Slice-Mix-AggRegaTe (SMART)---builds on slicing techniques and the associative property of addition. It has the advantage of incurring less computation overhead. The goal of our work is to bridge the gap between collaborative data collection by wireless sensor networks and data privacy. We assess the two schemes by privacy-preservation efficacy, communication overhead, and data aggregation accuracy. We present simulation results of our schemes and compare their performance to a typical data aggregation scheme (TAG), where no data privacy protection is provided. Results show the efficacy and efficiency of our schemes.
PDA:保护隐私的信息收集数据聚合
如何在保证数据隐私的同时实现高效的数据聚合是无线传感器网络研究中一个具有挑战性的问题。在本文中,我们提出了两种可加性聚合函数的隐私保护数据聚合方案,它们可以扩展到近似MAX/MIN聚合函数。第一种方案——基于集群的私有数据聚合(CPDA)——利用聚类协议和多项式的代数性质。它的优点是产生较少的通信开销。第二种方案——切片-混合-聚合(SMART)——建立在切片技术和加法的关联性质之上。它的优点是产生较少的计算开销。我们的工作目标是弥合无线传感器网络协同数据收集与数据隐私之间的差距。我们通过隐私保护效率、通信开销和数据聚合精度来评估这两种方案。我们给出了我们的方案的仿真结果,并将其性能与不提供数据隐私保护的典型数据聚合方案(TAG)进行了比较。实验结果表明了所提方案的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信