The Maple Syrup Problem Revisited: MCMC with Gibbs Sampling

T. Donovan, R. Mickey
{"title":"The Maple Syrup Problem Revisited: MCMC with Gibbs Sampling","authors":"T. Donovan, R. Mickey","doi":"10.1093/OSO/9780198841296.003.0016","DOIUrl":null,"url":null,"abstract":"This chapter introduces Markov Chain Monte Carlo (MCMC) with Gibbs sampling, revisiting the “Maple Syrup Problem” of Chapter 12, where the goal was to estimate the two parameters of a normal distribution, μ‎ and σ‎. Chapter 12 used the normal-normal conjugate to derive the posterior distribution for the unknown parameter μ‎; the parameter σ‎ was assumed to be known. This chapter uses MCMC with Gibbs sampling to estimate the joint posterior distribution of both μ‎ and σ‎. Gibbs sampling is a special case of the Metropolis–Hastings algorithm. The chapter describes MCMC with Gibbs sampling step by step, which requires (1) computing the posterior distribution of a given parameter, conditional on the value of the other parameter, and (2) drawing a sample from the posterior distribution. In this chapter, Gibbs sampling makes use of the conjugate solutions to decompose the joint posterior distribution into full conditional distributions for each parameter.","PeriodicalId":285230,"journal":{"name":"Bayesian Statistics for Beginners","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Statistics for Beginners","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/OSO/9780198841296.003.0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter introduces Markov Chain Monte Carlo (MCMC) with Gibbs sampling, revisiting the “Maple Syrup Problem” of Chapter 12, where the goal was to estimate the two parameters of a normal distribution, μ‎ and σ‎. Chapter 12 used the normal-normal conjugate to derive the posterior distribution for the unknown parameter μ‎; the parameter σ‎ was assumed to be known. This chapter uses MCMC with Gibbs sampling to estimate the joint posterior distribution of both μ‎ and σ‎. Gibbs sampling is a special case of the Metropolis–Hastings algorithm. The chapter describes MCMC with Gibbs sampling step by step, which requires (1) computing the posterior distribution of a given parameter, conditional on the value of the other parameter, and (2) drawing a sample from the posterior distribution. In this chapter, Gibbs sampling makes use of the conjugate solutions to decompose the joint posterior distribution into full conditional distributions for each parameter.
重新审视枫糖浆问题:吉布斯抽样的MCMC
本章介绍了使用Gibbs抽样的马尔可夫链蒙特卡罗(MCMC),重温了第12章的“枫糖浆问题”,其中的目标是估计正态分布的两个参数,μ和σ。第12章采用正态-正态共轭法推导了未知参数μ的后验分布;假设参数σ]是已知的。本章采用Gibbs抽样的MCMC方法估计μ和σ的联合后验分布。Gibbs抽样是Metropolis-Hastings算法的一个特例。本章描述了Gibbs逐步抽样的MCMC,它需要(1)计算给定参数的后验分布,以另一个参数的值为条件,(2)从后验分布中抽取样本。在本章中,Gibbs抽样利用共轭解将联合后验分布分解为每个参数的完整条件分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信