Hierarchical Bayesian algorithm for diffuse optical tomography

M. Guven, B. Yazıcı, X. Intes, B. Chance
{"title":"Hierarchical Bayesian algorithm for diffuse optical tomography","authors":"M. Guven, B. Yazıcı, X. Intes, B. Chance","doi":"10.1109/AIPR.2005.30","DOIUrl":null,"url":null,"abstract":"Diffuse optical tomography (DOT) poses a typical ill-posed inverse problem with limited number of measurements and inherently low spatial resolution. In this paper, we propose a hierarchical Bayesian approach to improve spatial resolution and quantitative accuracy by using a priori information provided by a secondary high resolution anatomical imaging modality, such as magnetic resonance (MR) or X-ray. The proposed hierarchical Bayesian approach allows incorporation of partial a priori knowledge about the noise and unknown optical image models, thereby capturing the function-anatomy correlation effectively. Numerical simulations demonstrate that the proposed method avoids undesirable bias towards anatomical prior information and leads to significantly improved spatial resolution and quantitative accuracy","PeriodicalId":130204,"journal":{"name":"34th Applied Imagery and Pattern Recognition Workshop (AIPR'05)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"34th Applied Imagery and Pattern Recognition Workshop (AIPR'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2005.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Diffuse optical tomography (DOT) poses a typical ill-posed inverse problem with limited number of measurements and inherently low spatial resolution. In this paper, we propose a hierarchical Bayesian approach to improve spatial resolution and quantitative accuracy by using a priori information provided by a secondary high resolution anatomical imaging modality, such as magnetic resonance (MR) or X-ray. The proposed hierarchical Bayesian approach allows incorporation of partial a priori knowledge about the noise and unknown optical image models, thereby capturing the function-anatomy correlation effectively. Numerical simulations demonstrate that the proposed method avoids undesirable bias towards anatomical prior information and leads to significantly improved spatial resolution and quantitative accuracy
漫射光学层析成像的层次贝叶斯算法
漫射光学层析成像(DOT)是一个典型的病态逆问题,测量次数有限,固有的空间分辨率很低。在本文中,我们提出了一种层次贝叶斯方法,通过使用二次高分辨率解剖成像方式(如磁共振(MR)或x射线)提供的先验信息来提高空间分辨率和定量精度。提出的分层贝叶斯方法允许结合关于噪声和未知光学图像模型的部分先验知识,从而有效地捕获功能-解剖相关性。数值模拟结果表明,该方法避免了对解剖先验信息的不期望偏差,显著提高了空间分辨率和定量精度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信