{"title":"Hierarchical Bayesian algorithm for diffuse optical tomography","authors":"M. Guven, B. Yazıcı, X. Intes, B. Chance","doi":"10.1109/AIPR.2005.30","DOIUrl":null,"url":null,"abstract":"Diffuse optical tomography (DOT) poses a typical ill-posed inverse problem with limited number of measurements and inherently low spatial resolution. In this paper, we propose a hierarchical Bayesian approach to improve spatial resolution and quantitative accuracy by using a priori information provided by a secondary high resolution anatomical imaging modality, such as magnetic resonance (MR) or X-ray. The proposed hierarchical Bayesian approach allows incorporation of partial a priori knowledge about the noise and unknown optical image models, thereby capturing the function-anatomy correlation effectively. Numerical simulations demonstrate that the proposed method avoids undesirable bias towards anatomical prior information and leads to significantly improved spatial resolution and quantitative accuracy","PeriodicalId":130204,"journal":{"name":"34th Applied Imagery and Pattern Recognition Workshop (AIPR'05)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"34th Applied Imagery and Pattern Recognition Workshop (AIPR'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2005.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Diffuse optical tomography (DOT) poses a typical ill-posed inverse problem with limited number of measurements and inherently low spatial resolution. In this paper, we propose a hierarchical Bayesian approach to improve spatial resolution and quantitative accuracy by using a priori information provided by a secondary high resolution anatomical imaging modality, such as magnetic resonance (MR) or X-ray. The proposed hierarchical Bayesian approach allows incorporation of partial a priori knowledge about the noise and unknown optical image models, thereby capturing the function-anatomy correlation effectively. Numerical simulations demonstrate that the proposed method avoids undesirable bias towards anatomical prior information and leads to significantly improved spatial resolution and quantitative accuracy