Utilizing AlexNet Deep Transfer Learning for Ear Recognition

A. Almisreb, N. Jamil, N. Md Din
{"title":"Utilizing AlexNet Deep Transfer Learning for Ear Recognition","authors":"A. Almisreb, N. Jamil, N. Md Din","doi":"10.1109/INFRKM.2018.8464769","DOIUrl":null,"url":null,"abstract":"Transfer Learning is an efficient approach of solving classification problem with little amount of data. In this paper, we applied Transfer Learning to the well-known AlexNet Convolution Neural Network (AlexNet CNN) for human recognition based on ear images. We adopted and fine-tuned AlexNet CNN to suit our problem domain. The last fully connected layer is replaced with another fully connected layer to recognize 10 classes instead of 1000 classes. Another Rectified Linear Unit (ReLU) layer is also added to improve the non-linear problem-solving ability of the network. To train the fine-tuned network, we allocate 250 ear images taken from 10 subjects for training, and 50 ear images are used for validation and testing. The proposed fine-tuned network works well in our application as we get 100% validation accuracy.","PeriodicalId":196731,"journal":{"name":"2018 Fourth International Conference on Information Retrieval and Knowledge Management (CAMP)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Fourth International Conference on Information Retrieval and Knowledge Management (CAMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFRKM.2018.8464769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76

Abstract

Transfer Learning is an efficient approach of solving classification problem with little amount of data. In this paper, we applied Transfer Learning to the well-known AlexNet Convolution Neural Network (AlexNet CNN) for human recognition based on ear images. We adopted and fine-tuned AlexNet CNN to suit our problem domain. The last fully connected layer is replaced with another fully connected layer to recognize 10 classes instead of 1000 classes. Another Rectified Linear Unit (ReLU) layer is also added to improve the non-linear problem-solving ability of the network. To train the fine-tuned network, we allocate 250 ear images taken from 10 subjects for training, and 50 ear images are used for validation and testing. The proposed fine-tuned network works well in our application as we get 100% validation accuracy.
利用AlexNet深度迁移学习进行耳朵识别
迁移学习是解决小数据量分类问题的一种有效方法。在本文中,我们将迁移学习应用于著名的AlexNet卷积神经网络(AlexNet CNN),用于基于耳朵图像的人类识别。我们采用并微调了AlexNet CNN以适应我们的问题领域。最后一个完全连接的层被另一个完全连接的层取代,以识别10个类而不是1000个类。另外还增加了一个整流线性单元(ReLU)层,以提高网络的非线性问题解决能力。为了训练微调后的网络,我们从10个受试者中分配了250张耳朵图像用于训练,50张耳朵图像用于验证和测试。所建议的微调网络在我们的应用程序中运行良好,因为我们获得了100%的验证准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信