Non-Audible Speech Classification Using Deep Learning Approaches

Rommel Fernandes, Lei Huang, G. Vejarano
{"title":"Non-Audible Speech Classification Using Deep Learning Approaches","authors":"Rommel Fernandes, Lei Huang, G. Vejarano","doi":"10.1109/CSCI49370.2019.00118","DOIUrl":null,"url":null,"abstract":"Research advancement of human-computer interaction (HCI) has recently been made to help post-stroke victims dealing with physiological problems such as speech impediments due to aphasia. This paper investigates different deep learning approaches used for non-audible speech recognition using electromyography (EMG) signals with a novel approach employing continuous wavelet transforms (CWT) and convolutional neural networks (CNNs). To compare its performance with other popular deep learning approaches, we collected facial surface EMG bio-signals from subjects with binary and multi-class labels, trained and tested four models, including a long-short term memory(LSTM) model, a bi-directional LSTM model, a 1-D CNN model, and our proposed CWT-CNN model. Experimental results show that our proposed approach performs better than the LSTM models, but is less efficient than the 1-D CNN model on our collected data set. In comparison with previous research, we gained insights on how to improve the performance of the model for binary and multi-class silent speech recognition.","PeriodicalId":103662,"journal":{"name":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI49370.2019.00118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Research advancement of human-computer interaction (HCI) has recently been made to help post-stroke victims dealing with physiological problems such as speech impediments due to aphasia. This paper investigates different deep learning approaches used for non-audible speech recognition using electromyography (EMG) signals with a novel approach employing continuous wavelet transforms (CWT) and convolutional neural networks (CNNs). To compare its performance with other popular deep learning approaches, we collected facial surface EMG bio-signals from subjects with binary and multi-class labels, trained and tested four models, including a long-short term memory(LSTM) model, a bi-directional LSTM model, a 1-D CNN model, and our proposed CWT-CNN model. Experimental results show that our proposed approach performs better than the LSTM models, but is less efficient than the 1-D CNN model on our collected data set. In comparison with previous research, we gained insights on how to improve the performance of the model for binary and multi-class silent speech recognition.
使用深度学习方法的不可听语音分类
近年来,人机交互(HCI)的研究取得了进展,以帮助中风后患者处理由失语症引起的语言障碍等生理问题。本文研究了利用肌电图(EMG)信号进行非听语音识别的不同深度学习方法,并采用了一种采用连续小波变换(CWT)和卷积神经网络(cnn)的新方法。为了与其他流行的深度学习方法进行比较,我们收集了具有二分类和多分类标签的受试者的面部肌电信号,训练和测试了四种模型,包括长短期记忆(LSTM)模型、双向LSTM模型、一维CNN模型和我们提出的CWT-CNN模型。实验结果表明,在我们收集的数据集上,我们提出的方法比LSTM模型性能更好,但比一维CNN模型效率低。与以往的研究相比,我们对如何提高模型在二值和多类无声语音识别中的性能有了新的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信