Multitarget Localization on Road Networks with Hidden Markov Rao-Blackwellized Particle Filters

N. Ahmed, D. Casbeer, Yongcan Cao, Derek B. Kingston
{"title":"Multitarget Localization on Road Networks with Hidden Markov Rao-Blackwellized Particle Filters","authors":"N. Ahmed, D. Casbeer, Yongcan Cao, Derek B. Kingston","doi":"10.2514/1.I010539","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of tracking multiple moving targets on a road network with sparse, highly localized, unattended ground sensor data that are subject to clutter and missed detections. Hidden Markov models for single-target localization with unattended ground sensor data are first derived for road networks, under the assumption of perfect data association. These hidden Markov models are then used to solve the data association problem in the presence of clutter and missed detections for multitarget tracking using a Rao–Blackwellized particle filter. The proposed hidden Markov model tracking approach permits easy generation of accurate probabilistic models from a priori road network structure information, and it naturally enables sparse computationally efficient handling of multimodal target state uncertainties using both positive and negative unattended ground sensor information. The Rao–Blackwellized particle filter provides a fully Bayesian solution to the data association problem, enabling...","PeriodicalId":179117,"journal":{"name":"J. Aerosp. Inf. Syst.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Aerosp. Inf. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.I010539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper considers the problem of tracking multiple moving targets on a road network with sparse, highly localized, unattended ground sensor data that are subject to clutter and missed detections. Hidden Markov models for single-target localization with unattended ground sensor data are first derived for road networks, under the assumption of perfect data association. These hidden Markov models are then used to solve the data association problem in the presence of clutter and missed detections for multitarget tracking using a Rao–Blackwellized particle filter. The proposed hidden Markov model tracking approach permits easy generation of accurate probabilistic models from a priori road network structure information, and it naturally enables sparse computationally efficient handling of multimodal target state uncertainties using both positive and negative unattended ground sensor information. The Rao–Blackwellized particle filter provides a fully Bayesian solution to the data association problem, enabling...
基于隐马尔可夫rao - blackwelzed粒子滤波的道路网络多目标定位
本文考虑了在具有稀疏、高度局部化、无人值守的地面传感器数据的道路网络中跟踪多个运动目标的问题,这些数据容易受到杂波和漏检的影响。在数据完全关联的假设下,首先推导了无人值守地面传感器数据下路网单目标定位的隐马尔可夫模型。然后利用这些隐马尔可夫模型,利用rao - blackwell化粒子滤波解决了多目标跟踪中存在杂波和漏检的数据关联问题。所提出的隐马尔可夫模型跟踪方法允许从先验道路网络结构信息中轻松生成精确的概率模型,并且它自然地使使用正负无人驾驶地面传感器信息的多模态目标状态不确定性的稀疏计算高效处理成为可能。rao - blackwelized粒子滤波器为数据关联问题提供了完全的贝叶斯解决方案,使…
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信