Predicting the B-H Loops of Power Magnetics with Transformer-based Encoder-Projector-Decoder Neural Network Architecture

Haoran Li, Diego Serrano, Shukai Wang, T. Guillod, Min Luo, Minjie Chen
{"title":"Predicting the B-H Loops of Power Magnetics with Transformer-based Encoder-Projector-Decoder Neural Network Architecture","authors":"Haoran Li, Diego Serrano, Shukai Wang, T. Guillod, Min Luo, Minjie Chen","doi":"10.1109/APEC43580.2023.10131497","DOIUrl":null,"url":null,"abstract":"This paper presents a transformer-based encoder-projector-decoder neural network architecture for modeling power magnetics B-H hysteresis loops. The transformer-based encoder-decoder network architecture maps a flux density excitation waveform (B) into the corresponding magnetic field strength (H) waveform. The predicted B-H loop can be used to estimate the core loss and support magnetics-in-circuit simulations. A projector is added between the transformer encoder and decoder to capture the impact of other inputs such as frequency, temperature, and dc bias. An example transformer neural network is designed, trained, and tested to prove the effectiveness of the proposed architecture.","PeriodicalId":151216,"journal":{"name":"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC43580.2023.10131497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a transformer-based encoder-projector-decoder neural network architecture for modeling power magnetics B-H hysteresis loops. The transformer-based encoder-decoder network architecture maps a flux density excitation waveform (B) into the corresponding magnetic field strength (H) waveform. The predicted B-H loop can be used to estimate the core loss and support magnetics-in-circuit simulations. A projector is added between the transformer encoder and decoder to capture the impact of other inputs such as frequency, temperature, and dc bias. An example transformer neural network is designed, trained, and tested to prove the effectiveness of the proposed architecture.
基于变压器的编码器-投影-解码器神经网络结构预测电力磁力的B-H回路
本文提出了一种基于变压器的编码器-投影-解码器神经网络结构,用于电力磁B-H磁滞环的建模。基于变压器的编码器-解码器网络架构将磁通密度激励波形(B)映射到相应的磁场强度波形(H)。预测的B-H回路可用于估计铁芯损耗和支持电路中的磁模拟。在变压器编码器和解码器之间添加一个投影仪,以捕获其他输入(如频率、温度和直流偏置)的影响。设计、训练和测试了一个变压器神经网络实例,证明了该结构的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信