SkiLL: Skipping Color and Label Landscape: Self Supervised Design Representations for Products in E-commerce

V. Verma, D. Sanny, S. Kulkarni, Prateek Sircar, Abhishek Singh, D. Gupta
{"title":"SkiLL: Skipping Color and Label Landscape: Self Supervised Design Representations for Products in E-commerce","authors":"V. Verma, D. Sanny, S. Kulkarni, Prateek Sircar, Abhishek Singh, D. Gupta","doi":"10.1109/CVPRW59228.2023.00354","DOIUrl":null,"url":null,"abstract":"Understanding the design of a product without human supervision is a crucial task for e-commerce services. Such a capability can help in multiple downstream e-commerce tasks like product recommendations, design trend analysis, image-based search, and visual information retrieval, etc. For this task, getting fine-grain label data is costly and not scalable for the e-commerce product. In this paper, we leverage knowledge distillation based self-supervised learning (SSL) approach to learn design representations. These representations do not require human annotation for training and focus on only design related attributes of a product and ignore attributes like color, orientation, etc. We propose a global and task specific local augmentation space which captures the desired image information and provides robust visual embedding. We evaluated our model for the three highly diverse datasets, and also propose and measure a quantitative metric to evaluate the model’s color invariant feature learning ability. In all scenarios, our proposed approach outperforms the recent SSL model by upto 8.6% in terms of accuracy.","PeriodicalId":355438,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW59228.2023.00354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the design of a product without human supervision is a crucial task for e-commerce services. Such a capability can help in multiple downstream e-commerce tasks like product recommendations, design trend analysis, image-based search, and visual information retrieval, etc. For this task, getting fine-grain label data is costly and not scalable for the e-commerce product. In this paper, we leverage knowledge distillation based self-supervised learning (SSL) approach to learn design representations. These representations do not require human annotation for training and focus on only design related attributes of a product and ignore attributes like color, orientation, etc. We propose a global and task specific local augmentation space which captures the desired image information and provides robust visual embedding. We evaluated our model for the three highly diverse datasets, and also propose and measure a quantitative metric to evaluate the model’s color invariant feature learning ability. In all scenarios, our proposed approach outperforms the recent SSL model by upto 8.6% in terms of accuracy.
技能:跳过颜色和标签景观:电子商务中产品的自我监督设计表示
在没有人工监督的情况下理解产品的设计是电子商务服务的关键任务。这种功能可以帮助完成多个下游电子商务任务,如产品推荐、设计趋势分析、基于图像的搜索和视觉信息检索等。对于这项任务,获取细粒度标签数据的成本很高,而且对于电子商务产品来说不可扩展。在本文中,我们利用基于知识蒸馏的自监督学习(SSL)方法来学习设计表示。这些表示不需要人工注释来进行训练,只关注产品的设计相关属性,而忽略颜色、方向等属性。我们提出了一个全局和任务特定的局部增强空间,它捕获所需的图像信息并提供鲁棒的视觉嵌入。我们在三个高度不同的数据集上评估了我们的模型,并提出并测量了一个定量度量来评估模型的颜色不变特征学习能力。在所有场景中,我们提出的方法在准确性方面比最近的SSL模型高出8.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信